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Abstract 
This paper builds predictive models of segment duration in 
context based on the CART models and “additive-
multiplicative” models for Korean text-to-speech. It uses a 
corpus of 670 read sentences collected from one speaker of 
standard Korean. The best performance was obtained from a 
CART decision tree model, which shows that the correlation 
between the observed and the predicted durations is 0.77 and 
the mean squared error of prediction is 25.11 ms. Linguistic 
implications of these models are also discussed. The 
perceptual evaluations of these models are carried out using a 
Korean language diphone database based on the MBROLA 
synthesis system in order to investigate the clarity and the 
listener preference for durations. 

1. Introduction 
There have been very few studies in the analysis and 
modelling of the prosody of Korean, particularly in the area of 
segmental durations. Those that have been conducted are 
poorly suited to the issues in contemporary speech synthesis 
systems. This paper sets out to perform a new analysis and 
modelling of Korean segmental duration. These studies are 
based on previous work where possible, but extended to take 
into account the demand of contemporary approaches to 
duration modelling as used in English and Japanese synthesis. 
However, this paper does not just try to build the best 
predictive model of segment duration in context. It also seeks 
to learn more about which factors and which structures are 
most important in Korean prosody. The outcome of this work 
is both a better model of Korean timing for use in synthesis, 
and a better understanding of the Korean language. 

2. Data Corpus 

2.1. Text processing 

The main corpus consisted of 670 sentences spoken by one 
speaker in a news reading style. 80% of the sentences went 
into the training data set (42,103 segments in 535 sentences), 
while 20% went into the test data set (10,737 segments in 135 
sentences). Besides the 670 sentences, an extra evaluation 
data set (10,609 segments in 135 sentences) was also prepared 
for evaluating the CART (Classification and Regression Tree) 
models [1]. The sentences are news broadcasts from the two 
main Korean broadcasting stations. The phone alignments 
were performed automatically using the Hvite program from 
the Hidden Markov Model Toolkit [2] and then hand-
checked. Each phonetic transcription was parsed into a 
hierarchical prosodic structure in which the symbolic 
transcription is replaced by feature descriptions stored in tree 
nodes. Each pronunciation was encoded as a metrical 

structure comprising syllables, onset, rhyme, nucleus and 
coda nodes as well as the segments, which are described using 
features. A prosodic hierarchy consisting of utterance (UTT), 
intonational phrase (IP), accentual phrase (AP), and 
phonological word (PW) nodes was used. After this process, 
the hierarchical structures were stored in extensible mark-up 
language, XML. The hierarchical structures were then aligned 
with the checked annotations in the speech signal. 

2.2. Prosodic structure 

In this paper, UTT is always a whole sentence. IP was 
assumed to be demarcated by a clear pause whether or not it 
ends with any kind of boundary tone. AP can be demarcated 
by a phrase final tonal pattern of “LH” in Korean [3]. Because 
of the lack of a lexical stress system in standard Korean, the 
metrical foot was not used. A PW can contain one content 
word with one or more suffixes, case particles or enders. 

2.3. Generation of training and test data for modelling 

For the modelling process, a feature string for each segment 
was automatically generated from the phonological structure 
using the ProXML scripting language [4].  The script looked 
at each segment in turn and constructed a binary or n-ary 
feature string from the properties of the target segment, the 
properties of its neighbours and its position in the prosodic 
structure. Each segment was annotated with the following 
features together with the actual duration: 
 

• phonemic identity of the target segment, e.g. segment 
name, or phonemic features of the target segment, i.e. 
major class features of the segment 

• phonemic features of the preceding and the following 
segments 

• syllable structure: position and structure of containing 
syllable 

• position of syllables in UTT, IP, AP and PW 
 
Two groups of feature descriptions were prepared: one with 
general class features and their sub-levels, and the other with 
binary distinctive features. The first group of features, 
“compact feature set”, treats vowels and consonants separately 
and was used in CART and “additive-multiplicative” 
modelling.  The second group, “binary feature set”, was used 
for the CART analysis only in order to investigate which 
distinctive features have most influences on duration. 

3. Analysis 

3.1. CART models for the “compact feature set” 

CART duration analysis has become a common method for 
building classification models from simple feature data, 



suggested by [1] as an alternative to heuristically derived 
duration prediction rules for duration modelling in synthesis. 
The strengths of CART modelling come from the ease with 
which trees may be built from duration data and from the 
speed of classification of new data. It also shows good 
performance in subjective terms. CART models cope with 
complex interactions because it makes very few assumptions 
about the structure of the data. The weakness of CART 
models lies in the fact that it cannot interpolate between 
known context to find values for unknown contexts. Another 
weakness of this model is that it relies on objective function 
for partitioning that may not be the best in a perceptual sense. 

The “Wagon” CART building program [5] was used as a 
tool for running this CART tree building process. Firstly, 
CART analysis directly predicted the duration. Two separate 
stepwise CART models for vowels and for consonants were 
trained. These used 19,071 vowels and 23,032 consonants in 
the training data set described by the name and major class 
features of each segment and the segmental and prosodic 
phrasal features describing the context. Training ended when 
additional features made no significant improvement in 
performance. This tree was “pruned” by removing questions 
and pooling leaf nodes so that the performance of the tree on 
the evaluation data set was maximised. The tree was then 
tested on 4,829 vowels and 5,908 consonants. Finally the 
correlation between actual and predicted durations and the 
mean squared error of prediction was found for the test set. 

In the second CART model, the tree predicts z-scores 
rather than the duration directly. Each segment duration was 
first converted into log ms. Then each log duration was 
transformed to a z-score using the mean and standard 
deviation for each phoneme type. The log transformation was 
used to create more normal probability distributions for 
duration. Because z-scores encode the inherent properties of 
each segment, the names and the major class features of the 
target segment were not used in this model. After prediction, 
the segmental duration can be calculated by the formula: 

Duration = mean + (z-score × standard deviation)        (1) 

The CART performance results for vowels and consonants 
using the “compact feature set” are summarised in Table 1. 

Table 1: CART performance results for vowels and 
consonants using "compact feature set". 

Vowels Consonants  

RMSE Corr. RMSE Corr. 

Duration 27.51 ms 0.78 24.20 ms 0.71 

z-score 26.01 ms 0.77 25.21 ms 0.70 

3.2. Additive-multiplicative models for “compact feature 
set” 

In [6], van Santen claimed that “additive-multiplicative” 
models capture the “directional invariance” of the segment 
duration and the factor interactions are better described by a 
multiplicative rule than an additive rule. The strength of this 
model is that with relatively few parameters, durations can be 
well estimated from training data. Unlike CART models, they 
naturally interpolate to unseen contexts. A formula is small so 
it is easy to apply and understand. The weakness of this 
approach to modelling is that it is difficult to unravel all 

interactions in training data and it needs a large corpus with 
wide variety of contexts. In this paper, firstly, the model 
formula was specified in terms of which factors were to be 
incorporated and how the parameters associated with each 
factor were to be combined in the model.  Each parameter was 
then initialised to a value specified by the experimenter. 
Limits on the allowed range of values were established. A 
function optimisation strategy was then employed whereby 
perturbations in the values of the parameters were investigated 
in terms of their effects on the model performance. The 
simulated annealing method [7] was used for the optimisation. 
This paper has not attempted to derive a new “additive-
multiplicative” model for Korean vowels but instead it has 
adapted the model reported in [8] of Japanese timing. Because 
feature classes of the model in [8] are different to those that 
have been used for Korean, they were modified as follows: 

DUR(id, man, prev, foll, syll, left_pos, right_pos) = 
 S1,1(id) + [S2,1(man) × S2,2(prev)] + [S3,1(man) × S3,2(foll)] + 
[S4,1(foll) × S4,2(syll)] + S5,1(left_pos) + S6,1(right_pos)  (2)  

where “id” is the identity of the vowel, “man” is the manner 
feature of the target vowel, “prev” the manner of the 
preceding vowel, “foll” the manner of the following vowel, 
“syll” the syllable structure, “left_pos” the syllable distance to 
the left phrase boundary, “right_pos” the syllable distance to 
the right phrase boundary. The correlation of this model 
trained by the simulated annealing method [7] was 0.68 and 
the prediction error was 32.13 ms. 

To obtain an “additive-multiplicative” model for 
consonants, we adapted the model used for vowels, having no 
specific information which might guide an alternative design.  
The model is: 

DUR(id, man, prev, foll, syll, syllpo, left_pos, right_pos) = 
 S1,1(id) + [S2,1(man) × S2,2(prev)] + [S3,1(man) × S3,2(foll)] + 
S4,1(syll) + S5,1(syllpo) + [S6,1(man) × S6,2(left_pos)] + 
[S7,1(man) × S7,2(right_pos)]  (3) 

where “syllpo” is the segment position in the syllable, i.e. 
onset or coda. The performance results of these models can be 
summarised as follows. 

Table 2: Performance results summary for vowels and 
consonants using “additive-multiplicative” model. 

Vowels Consonants 

RMSE Correlation RMSE Correlation 

32.13 ms 0.68 28.86 ms 0.54 

3.3. CART models for “binary feature set” 

In order to explore the importance of individual levels of each 
factor, the feature set was extended so that each n-ary feature 
was replaced with a number of binary features. For example, 
“left_pos” and “right_pos” features in “compact feature set” 
were replaced by “first”, “post-initial”, “medial”, 
“penultimate”, and “last” phrase position features with binary 
values assigned for each feature. A total of 69 features were 
available in the data set. The procedure for this modelling is 
similar to that of 3.1 except for the feature set.  When the 
duration was directly predicted from the tree, the tree was 
pruned back to 35 features. When the tree predicted z-scores 
rather than duration directly, the tree was pruned back to 40 



features after the evaluation process. The performance results 
of these models can be summarised as follows: 

Table 3: CART performance results summary for 
"binary feature set". 

 RMSE Correlation 

Duration 25.11 ms 0.77 

z-score 26.44 ms 0.74 

3.4. Mean feature effect 

Based on the CART decision tree in 3.3, the mean z-score 
changes arising from each selected feature acting on its own 
were calculated. We call this “mean feature effect” analysis.  
The objective of this analysis is to obtain from the CART tree 
information about the relative size of the effect of each feature 
on the segment duration. We know from the stepwise building 
of the tree which features were most important and in which 
order they were applied in the tree from root towards the leaf 
nodes. We can use this information to re-analyse the training 
data to establish the mean effect of each feature. The 
procedure is as follows: firstly the data is partitioned into two 
groups according to the value of the most important feature 
(here, 1_AP: AP-final position) and the means of each 
partition are calculated (1_AP=0: -0.12, and 1_AP=1: 0.87, 
values in z-scores). The difference between these means (0.99) 
is called the mean effect of feature “1_AP”. Next the mean 
duration value of each partition is then subtracted from the 
individual segment durations in that partition. In effect this 
“takes into account” the mean operation of feature “1_AP”. 
The data can then be partitioned according to the value of the 
second most important feature in the CART analysis (here, 
ON: onset position). This gives us two further means (ON=0: 
0.04, ON=1: -0.06) and the mean effect of feature ON (-0.09). 
The mean values from the two partitions can be subtracted as 
before to take into account feature “ON”, and the process 
repeated for the third most important feature and so on. The 
top 10 changes are given in Table 4. 

Table 4: Mean feature effect caused by selected 
features in the training data. 

Ranking Feature Partition 0 Partition 1 Diff. 

  Mean Size Mean Size  

1 1_AP -0.12 37170 0.87 4933 0.99 

2 ON 0.04 25704 -0.06 16399 -0.09 

3 AP_1 -0.06 37041 0.47 5062 0.53 

4 nas_ 0.03 34478 -0.12 7625 -0.15 

5 _nas 0.07 34467 -0.30 7636 -0.36 

6 PW_1 -0.03 28198 0.06 13905 0.09 

7 vce_ -0.12 13783 0.06 28320 0.18 

8 1_PW -0.06 27915 0.11 14188 0.16 

9 CVC 0.05 24978 -0.08 17125 -0.13 

10 cor_ -0.03 22082 0.03 20021 0.06 
Partition 0 = mean and size of partition when feature is 0. 
Partition 1 = means and size of partition when feature is 1. 

Mean effect analysis gives an overall picture of the effect of 
the most important features, but it doesn’t accurately reflect 
the actual operation of the tree, since it ignores interactions 
between features. Thus it could be that feature “ON” has a 
very different effect in “AP_1” positions than elsewhere. 
However we have found no evidence of strong interactions in 
the top 10 most important features. In this table, a positive 
mean feature effect in z-score corresponds to a lengthening 
effect of duration and a negative z-score is a shortening effect 
of duration. When the segment is in AP-final position (1_AP), 
the segment has the positive mean feature effect of 0.99, so it 
has a large lengthening effect. Also in this table, the AP-initial 
position feature (AP_1), the PW-initial position feature 
(PW_1), the PW-final position feature (1_PW), the preceding 
voicing feature (vce_), and the preceding coronal feature 
(cor_) had lengthening effects. On the other hand, the onset 
position feature (ON), the preceding nasal feature (nas_), the 
following nasal feature (_nas), and the CVC syllable structure 
feature (CVC) had shortening effects. 

4. Discussion of the Analysis 

4.1. Performance of the models 

The results in the paper showed that the CART models had 
overall better performance than the “additive-multiplicative” 
models. The performance was best when the duration was 
directly predicted from the CART tree, where the names and 
the major class features of the target segment were used in the 
tree. The prediction error and correlation coefficients of the 
best CART model in this paper were comparable with the best 
published results in Korean [9]. The results from “additive-
multiplicative” model for Korean in this analysis were worse 
than those for English or Japanese found in other studies. The 
calculation of the values for the same feature in different 
product terms should be investigated to improve the 
performance of this model. 

4.2. Linguistic implication 

By using a CART decision tree model with segment durations 
as z-scores, the linguistic implications of the model were 
investigated. The AP boundary had the most influence either 
to AP-initial or to AP-final syllables. It significantly 
lengthened the segment duration in the AP-final syllable. 
Though both the PW-initial position and the PW-final 
position were important in duration prediction, the PW-final 
position feature had more lengthening effect. UTT boundaries 
and IP boundaries did not contribute much to the duration 
once the AP boundary had been taken into account. This is 
believed to be partly because each UTT boundary and IP 
boundary is also an AP boundary and a PW boundary in the 
phonetic transcriptions. Though it is not described in Table 4, 
the results showed that shortening effect were seen in the 
syllables in all post-initial positions and in penultimate 
positions from boundaries. It shows that in Korean, the 
lengthening effect of the phrase does not penetrate into the 
syllables in these positions. The CART analysis did not find 
that syllable structure had a general effect on vowel duration 
except in the case of CVC syllable structure. 

Nasals seem to have a shortening effect than homorganic 
post-vocalic voiced obstruents. This is explained that vowel 
needs a special adjustment of the vocal folds to maintain 
vibrations during voiced plosives [10]. Though they are not in 



the top ten most important factors, aspiration and tenseness 
features of surrounding segments show significant shortening 
effect. This fact supports the idea that the glottal opening is 
the major controller of the vowel duration. This may also 
indicate that probably [stiff vocal cord] feature which covers 
aspirated plosives and tense plosives in Korean language has 
a significant shortening effect in the vowel duration. In 
agreement with previous studies of English and Korean, the 
models showed little effect caused by the place features of 
surrounding segments. 

5. Perceptual Evaluation 
Perceptual evaluation is essential to gauge the quality of 
synthesised speech. It is not always the case that improved 
statistical modelling leads to improved speech quality. The 
perceptual evaluation in the paper investigates the clarity and 
the listener preference for durations calculated by the best 
CART and “additive-multiplicative” models in this paper and 
durations calculated by a commercial Korean TTS system. 

5.1. Test procedure 

Nine sentences with various lengths were selected from 
broadcast news scripts, which were different from the data set 
used in the experiment. Durations were calculated by using the 
best CART model (model 1) and “additive-multiplicative” 
model (model 2). To compare the quality of the duration 
modelling with a commercial Korean TTS system, durations 
were also extracted from the ETRI (Korean Electronics and 
Telecommunications Research Institute) TTS demonstration 
system (model 3). F0 contours for the sentences were copied 
from natural read versions. The duration and F0 contour 
information of these models were then applied to the 
MBROLA Korean language diphone database “Hanmal (HN 
1.4)” [11]. The synthesised speeches by the three models were 
played to 10 subjects for perceptual evaluation. 

5.2. Results 

In terms of clarity, subjects preferred model 3, where ETRI 
durations were used, to the other models. The CART model 
followed the ETRI model and the “additive-multiplicative” 
model was the least preferred. All differences were statistically 
significant at p < 0.01. In terms of general preference, 
subjects’ preferences were more balanced, though “additive-
multiplicative” model was still the least preferred.  The CART 
model was most preferred by subjects, though the difference 
was not statistically significant. In an informal discussion 
among subjects, it was suggested that ETRI model was slower 
than other synthetic speech. ETRI had a distinctly slower 
speaking rate than other models. This suggests that the 
difference in tempo is significant perceptually, because it 
could explain why duration obtained by ETRI were preferred 
for clarity. 

The fact that the general preference for the CART and 
ETRI durations has similar scores shows that CART duration 
prediction in this paper is at least as good as that of ETRI’s. 
The “additive-multiplicative” model performed worse in both 
subjective and objective tests. 

6. Conclusions 
The analyses of this paper are believed to contribute to the 
study of spoken Korean in the following aspects. Firstly, it 
showed how much prosodic phrase features influenced 

duration and which of these were more important.  Secondly, 
it showed how phonological distinctive features could be used 
for modelling in such a way as to allow a linguistic 
interpretation of the model. Thirdly, these observations 
allowed us to determine which factors and which structures 
are most important in Korean prosody. 

In the course of preparing the experiments, a labelled 
database of spoken Korean was constructed. As a result of the 
experiments, a trained CART model for synthesis was 
obtained. Durations of segments in a new text can be rapidly 
predicted from this model.  The “Hanmal” diphone database 
for Korean speech synthesis was also developed as a by-
product of the perceptual testing. This database is now 
publicly available and currently in use by other researchers. 
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