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Abstract
The analysis and selection of input features within machine
learning techniques is an important problem if a new system
has to be established or the system has to be trained for a new
task. Within a Text-to-Speech (TTS) application this task has to
be handled while adapting a system to a new language or a new
speaker. In this paper a parameterized data-driven weight
decay [1] is presented and applied in order to systematically an-
alyze phonetic and linguistic input features of a neural network
(NN). The NN models an acoustic prosody generation module
of our TTS system Papageno. The original NN is enhanced by
an additional preprocessing unit. The input features are propa-
gated by a diagonal matrix to a preprocessing cluster. This diag-
onal matrix is the only one which utilizes the weight decay tech-
nique. So the elements of this matrix describe a weighing of the
input features. The application resulted in an evaluation of
input parameters and a strong reduction of input features with-
out performance loss. Within our f0-contour generation module
the squared error of the NN is remarkably reduced by 13%.

1. Introduction
Within data-driven prosody generation modeling by NNs was
established first by [2] and became state-of-the-art technique in
the following [3], [4]. The commonly used NN architecture is
the multi-layer-perceptron with a direct recurrence [2] or with-
out [3] [4]. The advantage of neuro modeling is that it allows
fast and easy adaptation to new languages, speakers and speak-
ing styles [3]. Our TTS system Papageno has a language
and speaker independent core with loadable knowledge bases
like lexica and NNs for special tasks. The f0-contour genera-
tion module is such a loadable one [4]. Building up a NN for
such a task for the first time or during the adaptation to a new
language or a new speaker there is a dilemma of using as many
inputs as available and at the same time avoiding high input di-
mensions of a NN. It is a known problem that NNs with a
high input dimension tend to over-fitting ([5]). This results in
lower generalization abilities. This problem was overcome us-
ing expert knowledge (knowledge about the importance of the
input parameters) or time consuming heuristic approaches [6]
(testing different input parameter constellations to get the best
performance). But with the proposed parametric weight de-
cay method it is possible to overcome the difficulties by a data-
driven technique that means fast adaptation without language
expertise. This parametric weight decay systematically analy-
ses the input vector of a NN. In an additional preprocessing unit
of the original NN the input parameters are propagated by a di-
agonal matrix to a preprocessing cluster. The weight decay con-
cept is applied only to these diagonal elements. These elements
represent a weighing of the according input, which then allows
an evaluation of input parameters. This paper is organized

as follows. Sec. 2 presents the standard weight decay method
and the parametric weight decay. In Sec. 3 the application of
the parametric weight decay within the f0-generation module is
presented. Experiments and results are shown in Sec. 4.

2. Weight Decay
The weight decay concept helps training NN models with a re-
duced degree of freedom by adding a penalty term to the er-
ror function (see eq. (1) and (4)). The first term E0(w) is the
original error function and the penalty is given by �
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where � denotes a factor that scales the penalty and wi denotes
the weights of the NN the penalty term is applied on. During
minimization of eq. (1)
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small values for the weights wi are preferred as high values
lead to big penalties. So the penalty term encourages smoother
NN mappings [1]. In eq. (1) an error function is depicted
known as the standard weight decay. j denotes the number of
the training epochs of the NN. In eq. (2)
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the according weight adaptation is given with � as a factor that

controls the step size during NN training. Substituting @E(wj )
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by its partial derivative leads to eq. (3)
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The weight vector wj+1 for the next epoch is computed as the
difference of the prior weight vector wj and the partial deriva-
tive of the error function (back propagation). This standard
weight decay was also applied in [7] [8]. In eq. (4)
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a modified penalty term with its weight adaptation in eq. (5)
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is shown. This weight decay will be called p-wd according to
the power p term in eq. (4). It is utilized within the following
experiments. There are different ways to realize the weight
decay within a NN training, as one might apply the penalty term
to all weights within the NN or to special connection areas. In
Figure 2 a sophisticated realization is depicted. The input vector
x is propagated by the diagonal matrix wdiag 2 Rl�l to the
preprocessing layer, which has a tanh-activation function (see
[9]). This diagonal matrix wdiag is the only connection which
utilizes the penalty term �

p

P
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Due to this order the vector element x0i is given by x0i =
xiw

diag
i . So w

diag
i gives a weighing of xi. wi is bound to

the interval [0,1]. After this preprocessing unit the weighed
inputs are propagated to the original NN with n hidden neu-
rons and m outputs. The original NN will be explained in de-
tail later in Sec. 3. It is important to initialize wdiag with
equal values(e.g. wstart;j=0

i = 0:5), which are incremented or
decremented according to the weight adaptation in eq. (5) dur-
ing training, as will be presented later. This type of realization
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Figure 1: realization of p-wd

of weight decay aims at:

a) Outlier cancellation: the asymptotic behavior of tanh is
used in the preprocessing layer as a delimiter. An element of
wdiag getting to big is limited to an interval [-1;1] at the output
side of the preprocessing cluster. Like that inputs are avoided
to dominate the mapping. All inputs are limited to the interval
[-1;1].

b) Soft input pruning: elements of wdiag being pushed to
zero are considered to have no significant influence on the NN
model. This means that the corresponding input contains no im-
portant information for this task with the used database. Inputs
being close to zero might be removed afterwards by introduc-
ing a threshold and omitting inputs with values in wdiag below
that threshold. So we obtain a soft input pruning, as there is no
ultimate decision made during training. Unimportant inputs are
faded out.

c) Separation into subtasks: The original task and the input
feature analysis are solved in a parallel manner. The feature
analysis does not need a further training phase.

Dealing with highly correlated input features the applica-
tion of p-wd should be preferred, as it helps to select one of the
highly correlated features in contrast to standard wd. wd does
not select one of the highly correlated inputs.

This different selection property of p-wd is exemplified us-
ing a NN with two highly correlated inputs. This can be formu-
lated in eq. (6).

x
0 = tanh(w1x1 +w2x2) (6)

As x1 and x2 are highly correlated eq. (6) is equal to eq. (7)

x
0 = tanh((w1 + w2)x1 + 0x2) (7)

The penalty terms for the standard weight decay are given by
eq. (8) (left side of the in-equation according to eq. (6) and the
right side according to eq. (7) )
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The proof of the validity of in-equation 8 is given by the follow-
ing: During the minimization of the error function in eq. (1) the
penalty term (P (w)) has to be minimized with the constraint
w1 + w2 = a. This constrained minimization is solved using
the Lagrange multiplier method (see eqs. (9) ... (14) ).
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The result of the Lagrange multiplier method is: both weights
have the same sign. Therefore the validity of in-equation 8 is
given. As P (w) from eq. (6) is smaller than P (w) from eq. (7)
it is obvious that none of the highly correlated inputs are se-
lected by the standard penalty �

2

P
w
w2. So we don’t obtain a

minimized input feature set.
The in-equation for p-wd is given by eq. (15).
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The proof of the validity is analog to ineq. (8). Through the p-
wd penalty function �

p

P
w
jwjp we achieve a minimized input

feature set as the right side of ineq.(15) is smaller than the left
side. By the experiments described in the following this behav-
ior of p-wd has been observed.

3. Application
The p-wd method presented above has been applied on the f0-
contour generation module which will be explained now. The
utilized NN has to map input parameters to an appropriate f0-
contour. Such a f0-contour on syllable level is depicted by
the solid line in Fig. 3. These contours are parameterized
(dashed line in Fig. 3) on syllable level by four values: f0-
maximum (p1), f0-maximum-position (p2), f0 at syllable start
(p3), and f0 at syllable end (p4). For parameterization a max-
imum based description is used [10], which mainly says that
f0-contours on syllable level for non-tonal languages can be de-
scribed by a rising on the first part and a falling on the second
part of the syllable. The mentioned parameters p1, p2, p3, and
p4 are the outputs y1; y2; y3; and y4 of the NN (see Fig. 3). So
the dimension m of the output cluster ism = 4. Fig. 3 is identic
with the upper part of Fig. 2. f0-contours are known to be influ-
enced by longterm features as the sentence type and breath and
by local stress intention. The input parameters must contain in-
formation with these local and global characteristics. For a good
mapping it is also important to provide contextual information
of the syllable. Due to computation reasons the context window
length was choosen to be seven to the left (past) and seven to the
right (future) of the syllable with the exception of the linguis-
tic categories. The following input features are presented to the
NN, which have to be evaluated regarding the importance and
the necessary contextual width.

a) phonetic information: The phonetic structure of a sylla-
ble to be processed is coded here. The vowel is presented as



an one-out-of-n coded input using the German Sampa phoneme
set. Neighboring phonemes of the vowel are assigned to four
classes ( plosive, fricatives, nasal and liquids) also as an one-
out-of-n coded input in a symmetric context window of four
phonemes.

b) positional information: Continuous positional informa-
tion gives time distances of the syllable and its vowel. Discrete
information denotes whether this syllable is an initial, medial or
final one within the sentence, the phrase, and the word.

c) stress and break information: Flags (one-out-of-n coded
input) denote the stress type of a syllable: unstressable, stress-
able, word stress, phrase second stress, and phrase main stress.
Four flags give break information: phrase break, sentence break,
question break, and B2 break. B2 breaks give smaller substruc-
teres within phrase breaks.

d) linguistic categories: The used linguistic category set
consists of 14 tags, which are one-out-of-n coded and presented
in a context of 3 to both sides: numeral, verb, verb particle, pro-
noune, preposition, noun, particle, determiner, conjunction, ad-
verb, adjective, particle+determiner, interjection, punctuation.
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Figure 2: Maximum Based Parameterization of f0-contours
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Figure 3: original NN for f0-contour generation

By this input constellation the input dimension of x accord-
ing to Fig. 3 and Fig. 2 is 567. The p-wd technique is applied
to recordings of three hours of a german news speaker read-
ing news from Frankfurter Allgemeine Zeitung. The patterns
for training (80%) and testing (20%) are separated. A valida-
tion set of (20%) is selected randomly from the training set. In
the following subsection the parameter of p-wd is optimized by
experiments. This NN is then used to analyze the inputs.

4. Experiments & Results
In a first series of experiments NNs with varying parameters
p from 0.1 to 2.0 in steps of 0.1 were trained. The optimum
parameter was found to be p = 0:6 (see Fig. 4). 3537 train-
ing epochs were used to train this NN. It was also observed
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Figure 4: NN squared errors on validation set

that smaller p needed more iterations. Without weight decay
80 training epochs were necessary. In Fig. 4 a three dimen-
sional plot depicts the behavior of wdiag . In this plotted
range (wdiag from 100 to 200 and parameter p from 0.6 to 2.0)
it is possible to see how special inputs are evaluated to have a
stronger effect within this NN mapping and how other inputs
are evaluated to have less impact almost independent of p.
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Figure 5: 3-dim. plot of wdiag values

In Fig. 4 the elements of wdiag are plotted for parameter
p = 0:6. As can be seen most of the elements are put to zero. A
reduction of the NN error on the validation and test set by 13%
was observed (see Table 3). The following gives an analysis of
the data-driven evaluation of the inputs. The symmetric context
window length of seven units was reduced to five units to the
left and four to the right.

a) Phonetic information: Only 8 vowels from original 18
vowels were valued to have an impact: diphthongs: (aI and aU),
long vowels: (a:, e:), short vowels: (a, I, O, U). Only direct pho-
netic neighbors of the vowels have a non-zero value. At the left
side classes are rated: nasal (=0.0962), liquid (=0.0505), and
fricative (=0.0226) different to the right side: liquid (=0.1021 )
and plosive (=0.0338).



b) Positional information: Continuous information has an
unsymmetric context window length (five to the left and three
to the right). The vowel position and duration of the central
syllable and its direct neighbors is rated non-zero. The syllable
position with in the sentence and the phrase was rated with a
context of five to the left and three to the right to be important.
Discrete positional information flags denoting the syllable to be
in the beginning of a phrase, the left neighbor to be a medial
syllable in a word, and the left neighbor to be in the final word
are rated non zero.
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Figure 6: diagonal elements of wdiag

c) Stress and break information: this group of information
was found to also have an unsymmetric context window length
with a left window of two units and a right window of four
units. The most important information was rated: main stress
within phrase (=0.3896), B2 (=0.3391) , secondary stress within
a phrase (=0.2683)

d) categories: only one category was rated non-zero: the
participle from the center to the right with window length
of two: categ7 (=0.0392), r1categ7 (=0.0204), and r2categ7
(=0.0117)

The different information types have different contextual
lenghts as shown in table 1. The dimensionality was strongly

contextual length right left

positional information 5 3
stress and breaks 2 4
categories inform. 0 2
phonetic inform. 3 2

Table 1: context window length

reduced from initially 567 to 67 inputs (p = 0:6). Tab. 2 gives
the reduction rates for parameter p.

NN p = 1:0 p = 0:8 p = 0:6 p = 0:4

reduction 16% 51% 78% 86%

Table 2: reduction of inputs by weight decay parameter p

In Table 3 the squared errors of the trained NN are listed.
Optimizing the squared errors does not necessarily result in a
naturally sounding voice. Perception is a highly complex pro-
cess not necessarily modeled appropriately by isolated squared
error distances. Therefore informal listening tests were per-
formed. But unlike the squared error tests these tests did not
verify an improvement of the NN performance.

NN normal NN standard wd (p = 0:6)

validation set 0.554 0.509 0.486
testing set 0.551 0.512 0.488

Table 3: NN squared errors

5. Conclusions
A specialized weight decay method is presented in this paper.
Which offers a soft input feature selection even within highly
correlated data input vector elements. Its application within the
f0-generation task helped to analyze and optimize the input fea-
tures without linguistic expert knowledge.

Important phonetic and linguistic input features are deter-
mined. The less important features are faded out during training
and removed afterwards. The necessary contextual widths for
each input information type are determined. By this data-driven
analysis the initial dimension of the input space is reduced by
78% with a reduction of the squared error by 13% in the test set.

This method gives systematical support for the selection of
input features and is well suited to reduce the dimension of input
vectors without having performance losses.
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