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Abstract
The generation of pleasant prosody parameters is very impor-
tant for speech synthesis. A prosody generation unit can be
seen as a dynamical system.

In this paper sophisticated time-delay recurrent neural net-
work (NN) topologies are presented which can be used for the
modeling of dynamical systems. Within the prosody prediction
task left and right context information is known to influence the
prediction of prosody control parameters. This can be modeled
by causal retro-causal information flows [1]. Since information
being available during training is partially unavailable during
application, there is a structural switching from training to ap-
plication. This structural change of the information flow is han-
dled by two asymmetric architectures.

These proposed new architectures allow the integration of
further a priori knowledge. By this we are able to improve
the performance of our duration control unit within our text-
to-speech (TTS) system Papageno.

1. Introduction
Different Methods for duration control have been proposed.
In [2] a rule based duration control method was presented,
which depending on rules modifies the duration of a segment
by a multiplicative or additive scaling factor. [3] differentiates
between different duration models. A data-driven method with
good generalization abilities is presented in [4] using a NN for
the syllable duration control.

Our acoustic prosody module consists of a duration con-
trol and a f0-contour unit. In a first approach our duration con-
trol module used a classification and regression trees (CART)
(CART) like method. The parameters for the nodes are derived
from triphon clusters obtained by a tree-based clustering algo-
rithm provided by standard clustering within HTK [5]. This
approach will not be explained in detail. In the following it is
called stat.

In a first run this statistic method was enhanced by a more
sophisticated statistical approach considering larger contextual
information on syllable and word level. But there is a dilemma
between robustness and significance of the statistics as Pa-
pageno utilizes a restricted speech database for its fundus (about
1k sentences). Therefore the NN approach is employed to solve
this dilemma due to his generalization property.

As depicted in Fig. 1 now both units are modeled by NN. In
Papageno the segmental duration control is handled first. Those
segmental durations generated by the duration control unit are
afterwards used as inputs to the f0-generation unit.

Continuous positional information of syllables is derived
from these durations, which are important for the f0-generation
task. A segmental duration module has to control the rhythm
of a synthetic voice and the known effect of final lengthening.
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Figure 1: acoustic prosody unit

Similar to the f0-contour prediction task [1] the duration control
unit uses left (past) and right (future) contextual information to
establish the prediction. The input features of both modules
are very similar. They are organized on syllable level for the
f0-contour prediction and on phoneme (triphone) level for the
duration control task. The state-of-the-art causal retro-causal
modeling was presented in [1] for the f0-prediction task. The
shortcomings of that architecture are a fix-point recurrence, that
causes stability problems during training, and a non-observance
of the mentioned structural switching. The causal retro-causal-
error-correction (CRCEC) NN architecture [1] is used as a basis
for the modeling of the duration control task. Different archi-
tectures will be presented to overcome these two problems.

This paper consists of four parts. In section 2 basics (finite
unfolding, error correction) and a new partial retro-causal ex-
pansion for the integration of the structural switching are dis-
cussed. In section 4 asymmetric architectures are discussed
which overcome the structural switching of the information
flow. Section 5 depicts the application of the asymmetric mod-
eling and gives results.

2. CRCECNN
The state-of-the-art causal retro-causal error-correction
(CRCEC)-NN modeling was proposed in [1]. The according
architecture is depicted in Fig. 2 for one time step (solid lines).
This architecture uses shared weights and has a symmetrical
extension to the neighboring time steps (dotted lines). As can
be seen there are two different information flows. In the upper
part of Fig. 2 there is a causal information flow denoted by the
matrix A carrying state information (st+i) of the dynamics
between neighboring state clusters. This path allows the
mapping of long-term forecasts. A retro-causal information
flow (rt+i) is given by the matrix F in the lower part of this
Figure.

Within each time step i there are two error-correction parts
incorporated. Both are coupled by the usage of one output
cluster (zt+i). The error-correction will be explained using the
causal information flow path.

While matrix B introduces external information ut to the



system, the matrix C transforms the state st to its expectation
yt. D propagates the model error (the expectation yt being
compensated by the observation ydt ) to cluster st+1. The path

st ! C ! zt ! D ! st+1

allows to map local structures as shocks or short term effects.
The z-clusters represent the output clusters of the NN architec-
ture.

In cluster zt the difference zt= Cst - ydt (forecast error)
between the expectation of the NN and the observation ydt is
computed. Note that ydt is propagated by �Id (identity) to zt.

This difference has its optimum in zero, since this denotes
no forecast error. Having no forecast errors results in a perfect
description of the dynamics. So the target vector (zt) is set to
zero during training.
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Figure 2: Causal Retro-Causal Modeling.

If there is no mismatch between expectation and observa-
tion, then no further information is propagated by matrix D to
state st and we almost obtain a simple finite unfolding NN.

An existing mismatch delivers further input information to
state st+1. This information is used during training for the
adaptation of parameters. By this error correction principle we
obtain in zt an internal vector driving the transition of the sys-
tem state together with external input ut and previous states.

These internal vectors generate the error flow. It is com-
puted at each output cluster time step of the unfolding.

If the internal autoregressive part coded in A and all exter-
nal driving forces of a dynamics are known, it would be possible
to give a perfect description of the dynamical system. But if it
is not possible to identify the dynamics due to missing or un-
known externals or noise, the last model error is an indicator
of the models misspecification. Since the model error is used
as a measure of unexpected shocks, the learning of false de-
pendencies is lowered and models generalization ability is im-
proved [8] [9] .

Incorporating information flow from the right to the left
captures retro-causal dependencies. If this is handled symmet-
rically over all time steps, this modeling results in fix point re-
currencies as depicted in [1]. One closed loop is given by :

st ! C ! zt ! E ! rt ! H ! zt�1 ! D ! st

These fix point recurrencies complicate computation of the
resulting CRCECNN. Therefore this paper proposes a partial
symmetric expansion in the following subsection which results
in a partial CRCECNN (P-CRCECNN).

3. P-CRCECNN
The NN depicted in Figure 3 utilizes shared weights and finite
unfolding. The coupling of both information flows is realized
by only one output cluster zt instead of the coupling at each
time step within CRCECNN.
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Figure 3: P-CRCECNN

By coupling those information flows within the present time
step this new architecture does not contain fix-point recurrent
loops, which might cause instabilities during training.

In the following this architecture will be used for further
adaptations.

4. Structural Switching
The structural switching will be explained using Fig. 3. During
training all segmental durations modeled as observations ydt+i
are known. But within the application there are no observation
available for i � 0, because they are not predicted yet. For
i < 0 predictions of the NN are re-utilized as observations.

Because of this mismatch between training and application
the retro-causal information flow has to be treated in a spe-
cific way. In the following to different ways of asymmetric
P-CRCECNN are explained which overcome this mismatch.

In Fig. 4 the idea of removing connections after training is
depicted. The dotted connections CR and DR are trained. So
the architecture is the same as depicted in Fig. 3 during train-
ing. But within the application connections CR and DR are
removed. The resulting architecture is then a finite unfolding in
time without the error correction principle for the retro-causal
information flow during application.

The next architecture is established by using finite unfold-
ing in time for the retro-causal path during training and appli-
cation as shown in Fig. 5.

5. Application and Results
In this section the application of asymmetric P-CRCRECNNs
within the segmental duration control unit of our acoustic
prosody module is presented. These data-driven methods are
applied to recordings of three hours of a german news speaker
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Figure 4: P-CRCECNN removed.
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Figure 5: P-CRCECNN finUnfold

reading news from Frankfurter Allgemeine Zeitung. The pat-
terns for training (80%) and testing (20%) are separated. A
validation set of (20%) is selected randomly from the training
set. This database is the same as used within the f0-generation
task [1]. The f0-generation task utilized patterns organized on
syllable level. But within this task patterns are organized on
triphone level.

Following information is presented to the NN in a context
of seven phonemes to the left and right.

� phonetic information

with one-out-of-n coding the phoneme index is presented
here. A phoneme-set of 45 phonemes is used. Addition-
ally the four phoneme classes (vowel, fricative, nasal,
liquid, and plosive) are presented here.

� positional information

Discrete information denotes whether the according syl-
lable is an initial, medial or final one within the phrase
and the word. Continuous information is given by the
relative syllable position within a sentence and phrase.

� stress information

Flags denoting the stress type of the according syllable
are coded here. Word level stress is presented by four
flags. Sentence level stress consists of two stress marks.

� linguistic categories

An one-out-of-n (set of 14 categories) coded linguis-
tic category denotes the category type of the according
word.

These inputs are presented at each time step of the unfold-
ing clusters denoted by ut+i. The according output vectors are
modeled as observations and are presented at each time step
in the clusters denoted by ydt+i. Target values for the NN are
normalized to ensure an optimized signal-flow during training
of the NN due to tanh-activation-function within the causal
and retro-causal state clusters. A first normalizing of segmental
duration is obtained by the mean and standard deviation value
from the used triphon classes. A second normalizing was nec-
essary to ensure an optimized signal flow during training of the
NN. The mean and standard deviation were derived from the
first normalized segmental durations.

For evaluation the trained NN were used to predict segmen-
tal durations of sentences which were in the test set. Three
audio-files are generated with those predictions which are then
used for evaluation.

In table 1 the deviations and root-mean-square-error (rmse)
(computing generated durations and original duration in the
database) are given in miliseconds for the used methods.

NN standard deviation rmse

stat 13 ms 18.1 ms
P-CRCECNN removed 11.9 ms 16.4 ms
P-CRCECNN finUnfold 14.9 ms 19 ms

Table 1: deviations

Within both experiments the P-CRCECNN removed
method gives better results. In a further test it was observed that
85.6% of phrase-breaks were realized with a clear final length-
ening.

As perception is a highly complex process not necessarily
modeled appropriately by isolated physically distances, infor-
mal listening test were performed.

Files generated by resynthesis utilizing the different pre-
sented NN-Architectures and the original one were presented to
seven non-expert listeners. They had to judge which of the pre-
sented files were most pleasant and least pleasant to them. They
also had to give a ranking. This ranking was then scaled on a
value set from 4 to 1, with 4 denoting the most pleasant file.

The mean values of the ranking are shown in table 2.
The asymmetric P-CRCECNN with connections removed after
training was evaluated to be most pleasant.

This architecture uses the error correction principle within
the retro-causal path for modeling local prosodic structures.
This seems to help the long term forecast path improving its

method marks

stat 1.3
P-CRCECNN removed 3.5
P-CRCECNN finUnfold 2.5

Table 2: listening tests

generalization ability, as this NN performs better than the P-
CRCECNN finUnfold, which does not utilize error correction.
The long term forecast path within P-CRCECNN finUnfold has
also to capture short time events.



6. Conclusions
In this paper specialized error correction NN architectures are
presented. First a partial CRCECNN is proposed to overcome
closed loop computation problems. Afterwards a structural
change of the information flow from training to application is
integrated into modeling of the NN. Two asymmetric NN archi-
tectures are presented to overcome this structural switching.

They are applied within the duration control task of our TTS
system Papageno. The best performing NN is selected by nu-
meric and listening experiments.

Informal listening tests show that an asymmetric architec-
ture improves performance. A sophisticated architecture with
connections trained but removed afterwards during application
delivers most pleasant prosodic parameters.
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