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Abstract

Recent years have been marked by the development of robotic
pets or partners such as small animals or humanoids. People
interact with them using natural human social cues, in particu-
lar emotional expressions. It is crucial that robot can detect the
emotional information contained in speech using only prosodic
features, since this is often the only information that they can
measure. We present here the first large scale experiment in
which a large feature set space and a large machine learning al-
gorithm space are searched concurrently. We describe new fea-
tures which prove to be much more efficient than the traditional
features used in the litterature.

1. Introduction
Recent years have been marked by the increasing development
of personal robots, either used as new educational technologies
or for pure entertainment/ Typically, these robots look like fa-
miliar pets such as dogs or cats (e.g. the Sony AIBO robot),
or sometimes take the shape of young children such as the hu-
manoids SDR-5 (Sony).

Among the capabilities that these personal robots need, one
of the most basic is the ability recognize human emotions. In-
deed, not only emotions are crucial to human reasoning, but
they are central to social regulation. Emotional communication
is at the same time primitive enough and efficient enough so that
we use it a lot when we interact with pets, in particular when we
tame them. This is also certainly what allows children to boot-
strap language learning and should be inspiring to teach robots
natural language.

In this paper, we present a set of experiments that formed
the basis of a technology for automatically recognizing the emo-
tions in speech based on prosodic features, and used now in
certain entertainment robots such as the Sony AIBO or SDR-4.
This work is the first (to our knowledge) large scale data mining
experiment in which we compare most of the standard machine
learning algorithms and explore the value of two hundred differ-
ent features. As shown below, we found some new features of
which efficiency seems to be significantly higher than the ones
traditionally used in the literature. Besides, all the work pre-
sented here is based on the use of freely available softwares and
thus can be reproduced with minor difficulties.

2. The acoustic correlates of emotions in
human speech

It is possible to achieve our goal only if there are some reliable
acoustic correlates of emotion/affect in the acoustic character-
istics of the signal. A number of researchers have already in-
vestigated this question ([3]). Their results agree on the speech

correlates that come from physiological constraints and corre-
spond to broad classes of basic emotions, but disagree and are
unclear when one looks at the differences between the acoustic
correlates of for instance fear and surprise or boredom and sad-
ness. Indeed, certain emotional states are often correlated with
particular physiological states ([6] which in turn have quite me-
chanical and thus predictable effects on speech, especially on
pitch, (fundamental frequency F0) timing and voice quality.

3. The recognition of emotions in human
speech

3.1. Goal

As interesting interactions need to be 2-ways, it is necessary
that robotic pets can also recognize the emotions of the humans
who are interacting with them. Human generally do that by us-
ing all the context and modalities, ranging from linguistic con-
tent to facial expression and intonation. Unfortunately, using
appropriately context is not easy for a machine in an uncon-
trolled environment: for instance robust speech recognition in
such situations is out of reach for nowadays systems, and facial
expression recognition needs both computational resources and
video devices that robotic creatures most often do not have. For
this reason we investigated how far we can go by using only
the prosodic information of the voice. Furthermore, the speech
we are interested in is the kind that occurs in everyday conversa-
tions, which means short unformal utterances, as opposed to the
speech produced when one is asked to read emotionally a para-
graph of for example a newspaper. Four broad classes of emo-
tional content were studied: joy/pleasure, sorrow/sadness/grief,
anger and calm/neutral.

3.2. Existing work

The first studies that were conducted (e.g. [8]) were not so
much trying to get an efficient machine recognition device, but
rather were searching for general qualitative acoustic correlates
of emotion in speech (for example: happiness tends to make
the mean pitch of utterances higher than in calm sentences).
More recently, the increasing awareness that affective comput-
ing had an important industrial potential ([6]) pushed research
towards the quest of performance in automatic recognition of
emotions in speech. Unfortunately, to our knowledge, no large
scale study using the modern tools developped in the machine
learning community have been conducted. Indeed, most often,
either only one or two learning schemes are tested (for e.g. in
[7], [2]) or very few and simple features are used ( [7], [2]),
or only small databases are used - less than 100 examples per
speaker (like foe e.g. in [2], [4], [7]) which makes that the power
of some statistical learning schemes may have been overlooked.



Only ([4]) have tried to make some systematic data mining,
using more than the traditional/standard set of features used by
the rest of the literature: mean, max, min, max-min, variance of
the pitch and intensity distributions, and of the lengths of phone-
mic or syllabic segments, or of pitch rising segments. Unfor-
tunately, this work lacks many experiments: 1) only 3 kinds of
learning schemes were used - support vector machines, gaussian
mixtures and linear discriminants - which are far from being the
best at dealing with data in which there are possibly many unr-
relevant features, and in particular do not allow to derive auto-
matically smaller set of features with optimal efficiency; 2) the
feature set was explored by choosing one learning scheme and
iteratively removing less useful features for classification: on
one hand this is rather ad hoc since it is linked to a very particu-
lar learning schemes and selection procedure, on the other hand
it does not allow to detect the fitness of groups of features. Fi-
nally, their work is based on speech generated by asking human
subjects to read newspaper texts in an emotional manner , which
does not correspond to our constraints. To our knowledge, only
two research groups have tried to build automatic recognition
machines of everyday speech are ([2], [7]). Yet, they could only
use very small databases, very few simple features and 2 differ-
ent learning algorithms. Finally, a general conclusion of this al-
ready existing corpus of research is that recognition rates above
60 percent even with only 4 basic emotions seems impossible
if there are several speakers. The enormous speaker variability
has been described in ([7]). As a conclusion, we chose to fo-
cus only on speaker dependant emotion recognition. This is not
necessarily a bad point from an industrial point of view since
it is targeted to robotic pets that may interact mainly only with
their caretaker (and the fact that robots only manage to recog-
nize their owner could even be a positive feature, because it is a
source oc complicity between a robot and its caretaker).

Our methodology is an extension of the work of ([4]) in
which we use more features (including new and crucial ones),
more learning schemes, and more standard feature space explo-
ration tools. A very large database of 2 speakers containing
unformal short emotional utterances is used. All experiments
were conducted using the freely available data mining software
Weka 1 , which implements most of the standards data mining
techniques.

3.3. The database

In order to have sufficiently large databases, we had to make
some compromises (the recording conditions as described in
([7]) or ([2]) are rather poor and unpractical). So we used two
japanese professional speakers (a man and a woman), who are
both voice actor/actress and worked on many radio/TV com-
mercials, Japanese dub of movies and animations. They were
asked to imitate everyday speech by pronouncing short sen-
tences or phrase like “Umm, I don’t know”, “Exactly!”, “See”,
“Hello”, “I see”, “How are you?”, “What kind of food do you
like?”, “Wonderful!”, “D’know”. Before each utterance, they
had to imagine themselves in a situation where they could ut-
ter it, and which would correspond to one of the four emo-
tional classes: joy/pleasure, sorrow/sadness/grief, anger, nor-
mal/neutral. If several emotions were compatible with the sen-
tence meaning, then they were allowed to utter each of them.
We ended with a database of 200 examples per speaker and
per emotions, which makes 2000 samples in total. We know
that having only two speakers restrains the generality of the re-

1Weka web page: http://www.cs.waikato.ac.nz/ ml/

sults, but to our knowldege no one so far had the opportunity to
have so many examples, even for one speaker, and so to use the
power of modern statistical learning algorithms. Nevertheless,
the making of more databases is planned.

3.4. Using data mining techniques

3.4.1. Features

The two main measures that can be done concerning the intona-
tion are pitch and intensity, which we did, like in all the works
reported above. For each signal, we also measured the inten-
sity of its low-passed and high-passed version, the cutting fre-
quency being chosen at 250 Hz (the particular value appears not
to be crucial), the idea being to separate the signal into a pure
prosodic component and a pure “spectral” component. Finally,
for sake of exhaustivity, we made a spectral measure consist-
ing in computing the norm of the absolute vector derivative of
the first 10 MFCC components (mel-frequency ceptral compo-
nents). All these measure were performed at each 0.01s time
frame, using the Praat software, which is a signal processing
toolkit freely available 2.

Each of these measures provides a serie of values that we
had to transform to provide different points of view upon the
data. So each serie of values was transformed into 4 series: the
serie of its minimas, the serie of its maximas, the serie of the
durations between local extrema of the 10Hz smoothed curve
(which models rhytmic aspects of the signal), and the serie it-
self. Finally, to get features out of these series, we computed
for each one: the mean, the maximum, the minimum, the differ-
ence between the maximum and the minimum, the variance, the
median, the first quartile, the third quartile and the interquartile
range, and the mean of the absolute value of the local derivative.
In total we used 5*4*10 = 200 features.

3.4.2. Learning algorithms

There are many learning schemes that have been developed in
the last 20 years (see [9], and they are often not equivalent:
some are more efficient with certain types of class distribu-
tions than others, and some are better at dealing with many un-
relevant features (which is the case here, as seen a posteriori)
or with structured feature sets (in which this is the “syntactic”
combination of the values of features which is crucial). As by
definition we do not know the structure of our data and/or the
(ir-)relevance of features, it would be a mistake to investigate
our problem with only very few learning schemes. As a conse-
quence, we chose to use a set of the most representative learn-
ing schemes, ranging from neural networks to rule induction or
classification by regression. Also, we used one of the best meta-
learning scheme, i.e. AdaBoostM1 ([9]), which allows gener-
ally the significant improvement in generalization performance
for unstable learning schemes like decision trees (an unstable
learning algorithm is one that can sometimes produce very dif-
ferent recognition machines when only a slight change in the
learning database has been performed). We chose to use the
Weka software, of which code and executable are freely avail-
able so that the experiment, though being large scale, can be
easily reproduced. This software also provides means like au-
tomatic cross-validation, or the search of feature spaces with
for e.g. genetic algorithms as we will see later. The list of all
learning algorithms is given in table 4. More details about these
algorithms can be found in [9].

2Praat web page: http://www.praat.org



name description
1-NN 1 nearest neighbours
5-NN voted 2 nearest neighbours
10-NN voted 10 nearest neighbours
Decision Tree/C4.5 C4.5 decision trees
Decision Rules/PART PART decision rules
Kernel Density Radial Basis Function Neural Net.
KStar KStar
Linear Regression classification via linear regression
LWR classification via locally weighted regression
Voted Perceptrons commitee of perceptrons
SVM 1 polynomial (deg. 1) Support Vector Machine
SVM 2 polynomial (deg. 2) Support Vector Machine
SVM 3 polynomial (deg. 3) Support Vector Machine
VFI Voted features interval
M5Prime clsiification via M5PRime regression method
Naive Bayes Naive Bayes classification algorithm
AdaBoostM1/C4.5 Adaboosted version of C4.5
AdaboostM1/PART Adaboosted version of PART

Table 1: Learning schemes

name speaker 1 speaker 2
1-NN 82 87
5-NN 84 87
10-NN 83 87
Decision Trees/C4.5 84 93
Decision Rules/PART 84 94
Kernel Density 84 90
Kstar 81 85
Linear Regression 88 91
LWR 87 90
Voted Perceptrons 70 76
SVM degree 1 88 94
SVM degree 2 89 94
SVM degree 3 88 94
VFI 80 93
M5Prime 86 96
Naive Bayes 84 90
AdaBoost M1/C4.5 90 96
AdaBoost M1/PART 91 97

Table 2: Using all features

3.4.3. All features/All algorithms

In a first experiment, evaluation was conducted in which all
algorithms were given all the (normalized) features, and were
trained on 90 percent of the database and tested on the remain-
ing 10 percent. This was repeated 10 times with each time
a different 90/10 percent split (we performed a 10-fold cross-
validation). Table 5 gives the average percentage of correct
classification for the 10 folds.

We see from these results that very high success rate (be-
tween 92 and 97 percent, which is higher than any other re-
ported result in the literature 3. can be obtained thanks to the use
of certain algorithms. Yet, the difference among algorithms is
striking: whereas the best results are obtained with adaboosted
decision trees and rules, some others perform 10 percent be-
low (like nearest neighbours, RBF neural nets or Support Vector
Machines, which are the ones typically used in other studies),
or even 20 percent below (commitees of perceptrons). This il-
lustrates our initial claim that one must be careful to try many
different learning schemes when one wants to solve a problem
about which we have very few prior or intuitive knowledge. It
is not surprising that the best results are obtained with decision
trees and rules since these kinds of algorithms are known to
be very good at dealing with many unrelevant features, which
seems to be the case here (if not, there would be less disparity
between results).

3Of course, it is difficult to compare because databases are different,
but at least the features and the algorithms used elsewhere are all strictly
included in this study

feature information gain
1: MEDIANINTENSITYLOW 1.44
2: MEANINTENSITYLOW 1.40
3: THIRDQUARTINTENSITYLOW 1.35
4: ONEQUARTINTENSITYLOW 1.34
5: MAXINTENSITYLOW 1.23
6: MININTENSITYLOW 1.14
7: THIRDQUARTMINIMASPITCH 0.72
8: THIRQUARTMAXIMASPITCH 0.72
9: THIRDQUARTPITCH 0.69
10: MAXMINIMASPITCH 0.67
11: MAXMAXIMASPITCH 0.67
12: MAXPITCH 0.67
13: MINMINIMASPITCH 0.59
14: MEDIANMINIMASPITCH 0.57
15: MEDIANMAXIMASPITCH 0.57
16: MINPITCH 0.52
17: MEDIANPITCH 0.52
18: MEANMINIMASPITCH 0.48
19: MEANMAXIMASPITCH 0.48
20:MEANPITCH 0.48

Table 3: Information Gain of 20 best features

3.5. Feature selection

After this first experiment, one naturally would like to see how
the feature set could be reduced for three reasons: 1) small fea-
tures set provide better generalization performance in general
(see [9]); 2) obviously, it is computationally cheaper to com-
pute less features; 3) it is interesting to see if the most useful
features for the machine learning algorithms are the ones that
are traditionally put forward in the psychoacoustic literature.

A first way of exploring the feature set is to look at the
results of learning schemes like decision rules (PART), which
are often used mainly as knowledge discovery devices:

If MEDIANINTENSITYLOW > 0.48 and
MINIMASPITCH <= 0.07 and
THIRDQUARTINTENSITY > 0.42 ==> CALM

ELSE If MEANINTENSITYLOW <= 0.58 and
MEDIANINTENSITYLOW <= 0.29 ==> ANGRY

ELSE If THIRDQUARTINTENSITYLOW > 0.48 ==> SAD

ELSE ==> HAPPY

These four and surprisingly simple rules allow a percentage
of correct classification in generalization of 94 percent for the
speaker 2 database ! The striking fact is the repeated use of
features related to the intensity of the low-pass signal.

In order to quantify the individual relevance of features or
attributes, there is a measure often used in the data mining litera-
ture, which is the expected information gain, or mutual informa-
tion between class and attribute. It corresponds to the difference
between the entropies H(class) and H(class—attribute) (see [9],
for details about how it is computed). Table 6 gives the 20 best
attributes according to the information gain they provide.

This table confirms the great value of the features concern-
ing the quartiles of the distribution of intensity values in the
low-passed signals. It also show something rather surprising:
among the 20 most individually informative features, only 3
(the 12, 16 and 20) are part of the standard set put forward in
psychoacoustic studies ([5], [3], Williams 1972) or used in most
of more application oriented research as in (Slaney et al. 1998,
Breazal 2000).

Yet, one has to be aware that individual salience of a fea-
ture is only partially interesting: it is not rare that success comes
from the combination of features. So in a first experiment, we
tried to compare a feature set containing only the features 1 to
6 related to low-passed signal intensity (LPF), with a feature



learning scheme (LPF) sp.1 (LPF) sp.2 (SF) sp.1 (SF) sp.2
1-NN 78 83 70 72
5-NN 84 82 72 75
10-NN 84 82 73 73
Decision Trees/C4.5 80 84 72 71
Decision Rules/PART 78 83 72 74
Kernel Density 82 85 71 74
Kstar 80 84 70 72
Linear Regression 63 68 72 78
LWR 75 71 75 80
Voted Perceptrons 51 70 60 58
SVM degree 1 63 68 73 78
SVM degree 2 71 70 77 50
SVM degree 3 76 85 78 82
VFI 78 76 64 70
M5Prime 83 85 76 80
Naive Bayes 82 81 74 72
AdaBoost M1/C4.5 80 81 80 78
AdaBoost M1/PART 80 83 79 78

Table 4: Comparing “standard” features and “low-passed signal
intensity” features

set composed of the standard features (SF) used in (Breazal
2000, or Slaneyet al. 1998): mean, min, max, max-min, and
variance of pitch and intensity of unfiltetered signal, plus mean
length of syllabic segments (Results are similar if we add jit-
ter and tremor as sometimes also used). Table N summarizes
these experiments (each number corresponds again to the mean
percentage of correct classification in generalization in 10-fold
cross-validation).

This table shows that if one uses only the quartiles of the
low-passed signal intensity, one still outperforms the combina-
tion of features used traditionally. Because here we have only
few speakers this result has to be taken with caution, but it
seems to indicate that previous work missed something crucial.

Finally, as we saw on this table, using only low-passed in-
tensity features yields substantially lower results that when one
used all features with decision rules. In order to attain our goal
of finding a very efficient small set of features, we used an au-
tomatic search method: genetic algorithms. Populations of fea-
tures (limited to 30) were generated and evolved using as fitness
the 10-fold cross-validation with 2 algorithms: Naive Bayes and
5-Nearest Neighbours (we chose these mainly because they are
fast to train). The outcome of this experiment was not obvi-
ous: within the selected feature set, not surprisingly, there were
features related to the quartiles of low-passed signal intensity
and features related to the quartiles of pitch, but also features
with relatively low individual information gain: those related to
the quartiles of the minimas of the unfiltered smoothed intensity
curve. Also, we can note that again, the machine learning algo-
rithms tend to always neglect features related to the variance or
the range of distributions, whatever the measure. A final exper-
iment using these 15 features along with all learning algorithms
was conducted (max, min, median, 3rd quartile and 1st quartile
of low-passed signal intensity, pitch and minimas of unfilterd
signal intensity). Results are summarized in table 8.

We observe that we get very similar best results than ini-
tially, with more than 10 times less features. Moreover and
interestingly, the variation between learning schemes is less
important and algorithms which performed badly like nearest
neighbours or Naive Bayes, behave now in a more satisfaying
manner.

4. Conclusion
We showed that using on a large scale modern data mining tech-
niques allowed to find non-obvious features which were missed
in precedent studies. In particular, it is interesting to see that the
features put forward in the psychoacoustic litterature are not the

name speaker 1 speaker 2
1-NN 87 92
5-NN 90 92
10-NN 87 91
Decision Trees/C4.5 85 92
Decision Rules/PART 86 93
Kernel Density 87 91
Kstar 86 90
Linear Regression 83 89
LWR 87 89
Voted Perceptrons 65 78
SVM degree 1 87 91
SVM degree 2 90 96
SVM degree 3 89 94
VFI 83 92
M5Prime 88 95
Naive Bayes 89 93
AdaBoost M1/C4.5 90 96
AdaBoost M1/PART 90 96

Table 5: Using the “optimal” feature set

preferred ones of machine learning algorithms. As precedent
studies seemed to show that multi-speaker emotion recognition
was a very difficult task in principle, the present work suggest
that speaker dependant recognition can reach very high scores,
if adequate features and learning schemes are used. This work
should serve as a basis for necessary additional experiments
with more databases including speakers of very different lan-
guages. The use of only freely available softwares should allow
other people who already posess these databases to help to pur-
sue this research.
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