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Abstract 

This paper deals with rhythmic modeling and its application to 
language identification. Beside phonetics and phonotactics, 
rhythm is actually one of the most promising features to be 
considered for language identification, but significant 
problems are unresolved for its modeling. In this paper, an 
algorithm dedicated to rhythmic segmentation is described. 
Experiments are performed on read speech for 5 European 
languages. Several algorithms are compared. They show that 
salient features may be automatically extracted and efficiently 
modeled from the raw signal: a linear discriminant analysis of 
the extracted features results in a 80 % percent of correct 
language identification for the 5 languages, using 20 s duration 
utterances. Additional experiments reveal that the automatic 
rhythmic units convey also speaker specific features. 

1. Introduction 
As other supra segmental aspects of speech, rhythm modeling 
is challenging engineers for many years. Beside the problems 
related to the design of an efficient model, one of the main 
difficulties is to define what to model since it is intricately 
linked both to the segmental structure of the language 
(voiced/unvoiced sounds, etc.) and to its supra segmental 
dimension. In this paper, we address the problem of extracting 
rhythmic units relevant for language identification. 

At present, the standard automatic language identification 
approach considers a phonetic modeling system as a front-
end, and the resulting sequences of phonetic units are decoded 
according to language-specific statistical grammars  [20]. 
Even if this approach reaches the best results, only marginal 
improvements have been performed since ’96, and it seems 
crucial not to underestimate the relevancy of alternative 
features present in the signal. 

Among the different levels of language description, 
prosodic features, and especially rhythm, carry a substantial 
part of the language identity (Section 2). However, due to the 
numerous problems that arise when talking about automatic 
rhythm extraction (Section 3), experiments on this topic are 
seldom, and most of the previous ones aiming at language 
identification are based on hand-labeled data ( [5], [7], [18]). 

The approach presented here, introduced in  [6], 
challenges the puzzle of automatic extraction of rhythmic 
features in a fully unsupervised language-independent 
approach (Section 4). Based on Vowel/Non-Vowel 
segmentation, it is subsequently exploited in a rhythm unit 
modeling for automatic language identification (Section 5). 
Several algorithms based on speech processing or data mining 
techniques are compared and the inter-speaker variability of 
rhythm is introduced.  

2. Motivations 
Rhythm is a characteristic of language that may be eventfully 
critical in different activities related to language. 

2.1. Language acquisition 

Numerous works in psycholinguistics have shown the major 
role of rhythm in the early language acquisition process (e.g. 
 [10]). Moreover, according to the frame-content theory  [9], 
the rhythm, and especially the CV pattern (the frame), is 
closely related to the closed-open alternation of the mouth 
during speech production. According to MacNeilage & Davis, 
this cycle is provided by the mandibular oscillation and it may 
be the first step in the evolution and acquisition of speech, 
followed by the rise of the capacity to produce a sequence of 
frames filled with different consonants and vowels (the 
content).  

2.2. Language synthesis 

Reaching a “natural voice” is one of the major challenges of 
language synthesis. At this moment, the notion of rhythm is 
most often related to the distinction between stressed vs. 
unstressed units. This distinction is important for the 
comprehension of stress-timed languages. However, this 
binary distinction does not define the fine timing distinctions 
of fluent speech, and does not match with syllable-timed 
family of languages. 

2.3. Language identification 

Among others, Thymé-Gobbel and Hutchings point out the 
importance of rhythmic information in language identification 
 [18]. With parameters related to rhythm and based on syllable 
timing, syllable duration, and descriptors of amplitude 
patterns, they have obtained promising results, and proved 
that mere prosodic cues can distinguish between some 
language pair with results comparable to some non-prosodic 
systems. 

Ramus et al.  [5] have shown that newborn infants are 
sensitive to the rhythmic properties of languages. Other 
experiments based on consonant/vowel segmentation of eight 
languages established that acoustic parameters might be able 
to classify languages according to their rhythmic properties 
( [5], [16]). 

3. Dealing with rhythm 

3.1. Linguistic classes of rhythm  

Experiments reported here focus on 5 European languages 
(English, French, German, Italian and Spanish). According to 



the literature, French, Spanish and Italian have syllable-timed 
rhythm while English and German have stress-timed rhythm. 
These two categories emerged from the theory of isochrony 
introduced by Pike and developed by Abercrombie  [1]. 
But more recent works, based on the measurement of the 
duration of inter-stress intervals in both stress-timed and 
syllable-timed languages provide an alternative framework in 
which these two binary categories are replaced by a 
continuum  [4]. In this theory, rhythmic differences between 
languages are then mostly related to their syllable structure 
and the presence (or absence) of vowel reduction.  

3.2. Rhythmic units and patterns 

The different works in linguistics or psycholinguistics 
reported above and the subsequent controversies on the status 
of rhythm in world languages illustrate dramatically the 
difficulty to segment speech into correct rhythmic units. Even 
if correlates between speech signal and linguistic rhythm exist 
 [16], reaching a relevant representation of it seems difficult. 
Another difficulty rises from the selection of an efficient 
modeling paradigm. At this moment, experiments based on 
neural networks show interesting trends  [5], but the problem 
is far from being resolved. We propose a new approach, based 
on an automatic segmentation of speech into rhythmic units 
not strictly related to the syllabic parsing.   

4. Rhythmic segmentation 
Even if the existence of non-vocalic syllabic core is reported, 
most of the rhythmic patterns alternate Consonants and 
Vowels. Thus, automatic rhythm extraction may be based on 
a segmentation of speech according to Consonant/Vowel 
labels. 
To reach that point, we take advantage from an algorithm 
formerly developed to model vowel systems in a language 
identification task  [12]. The main features of this algorithm 
are reviewed hereunder. 

4.1. Speech segmentation 

In order to extract features related to the potential consonant 
cluster (number and duration of consonants), a statistical 
segmentation based on the "Forward-Backward Divergence" 
algorithm is applied  [2]. It results in a segmentation into short 
segments (bursts, but also transient parts of voiced sounds) 
and longer segments (steady parts of sounds). 

4.2. Vowel detection 

A segmental speech activity detection is performed to discard 
pauses (not related to rhythm) and a vowel detection 
algorithm locates sounds that match a vocalic structure via a 
spectral analysis of the signal  [12]. It is applied in a language 
and speaker independent way without any manual adaptation 
phase. 

4.3. Rhythm and automatic segmentation 

The processing provides a segmentation of the speech signal 
in pause, non-vowel and vowel segments (see Figure 1). Due 
to the intrinsic properties of the algorithm (and especially the 
fact that transient and steady parts of a phoneme may be 
separated), it is somewhat incorrect to consider that this 
segmentation is exactly a Consonant/Vowel segmentation. 

However, it is undoubtedly correlated to the rhythmic 
structure of the speech sound, and in this paper, we 
investigate the assumption that this correlation enables a 
statistical model to discriminate languages according to their 
rhythm structure. 

4.4. Rhythm modeling units: Pseudo-syllables 

Modeling rhythm implies to select suitable units. We saw in 
Section 3 that they vary among the languages and that their 
intrinsic supra-segmental nature is not trivial to model. 

The existence of syllables, even if this unit may not be the 
most salient in stress-timed languages, is assessed in all the 
languages of the world. However, the segmentation of speech 
into syllables is typically a language-specific mechanism even 
if considering the sonority scale may allow deriving general 
rules  [13]. At this moment, no automatic language 
independent algorithm is available. 
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 Figure 1: Example of a Vowel/Non-vowel 
segmentation. The speaker pronounced “… très 

bo(nne)”. Vertical lines are given by the segmentation 
algorithm. 

Consequently, we introduce the notion of Pseudo-
Syllables (PS) derived from the most frequent syllable 
structure in the world, namely the CV structure ( [19]). In our 
algorithm, the speech signal is parsed in sequential patterns 
matching the structure: .CnV.  (with n an integer that may be 
zero). This way, no boundary has to be placed between to 
consonantal segments. 
For example, the parsing of the example displayed in Figure 1 
results in the sequence of 2 pseudo-syllables .CCCV.CV. 
corresponding with the phonetic sequence /t R ε b /. 

We are aware of the limits of such a basic rhythmic 
parsing, but it provides an attempt to model rhythm that may 
be subsequently improved. However, it has the considerable 
advantage that neither hand-labeled data nor extensive 
knowledge on the language rhythmic structure is required. 

5. Pseudo-syllabic modeling 

5.1. Corpus 

Experiments are performed on the MULTEXT multilingual 
corpus  [3]. This database contains recordings from five 
European languages (French, English, Italian, German and 
Spanish), pronounced by 50 different speakers (5 male and 5 
female per language). Data consist of read passages of about 
five sentences extracted from the EUROM1 speech corpus. 



They are augmented with the raw pitch contour and additional 
prosodic information. 
A limitation is that the same texts are produced on average by 
3.75 speakers, resulting in a possible partial text dependency 
of the models. Table 1 shows the duration of the corpus for 
each language. 

Table 1: The MULTEXT Corpus 
(from Campione & Véronis  [3]) 

Language Nb. Of 
speakers 

Passages 
per 

speaker 

Total 
duration 

(min.) 

Average 
duration 

per 
passage 

(s) 
English 10 15 44 17.6 
French 10 10 36 21.9 
German 10 20 73 21.9 
Italian 10 15 54 21.7 

Spanish 10 15 52 20.9 
TOTAL 50 75 4h19 20.7 

5.2. Pseudo-syllables description 

A pseudo-syllable may be described as a sequence of 
segments characterized by their binary category (Consonant 
or Vowel) and their duration. It would result in a variable 
length description, which would be difficult to handle. For 
this reason, another description resulting in a constant length 
description for each pseudo-syllable has been derived: 

For each pseudo-syllable, three basic parameters are 
computed, corresponding respectively with the total duration 
of the consonant cluster, the vowel duration and the 
complexity (in terms of number of segments) of the 
consonantal cluster. They are augmented with to parameters 
related to the stress structure of the rhythm: the Energy and 
the pitch of the vowel of the pseudo-syllable. These 
parameters are normalized according to their mean values 
along the sentence. With a .CCV. example, the description is 
then : 

( ){ }021.. FENdddP CVcCCCV +=   
where C and V are binary labels with: 

dX the duration of the segment X,  
NC the number of segments in the consonantal cluster, 
E the relative energy of the vowel (in dB) and 
F0 the relative pitch of the vowel. 
 
Even if this description is clearly non-optimal since the 

individual information on the consonant segments is lost, it 
takes a part of the complexity of the consonant cluster into 
account. 

5.3. Algorithms 

Several algorithms have been compared to assess the 
relevancy of the pseudo-syllable segmentation. Some of the 
selected approaches are typically applied to speech processing 
while others are employed in data mining:  

o Gaussian Mixture Model  (GMM)  [17] 
o Multilayer Perceptron (MLP)  [11] 
o Decision Tree (DT)  [14] 
o Linear Discriminant Analysis (LDA)  [8] 

With the GMM, the identification is based on a maximum 
likelihood decision considering the pseudo-syllables as 
independent observations of the same stochastic process.  
For the 3 other algorithms, means, variances and covariances 
and are computed for each parameter, resulting in 20 
parameters per test item. Decision is then taken in this 
parameter space.   

5.4. Language Identification 

Experiments are performed on the five languages of the 
MULTEXT corpus. Since the amount of data is very limited 
(especially in terms of number of speakers), a cross-validation 
is performed: nine of the ten speakers are used for the training 
while the tenth one is classified according to the maximum 
likelihood criterion. This learning-testing procedure is applied 
for each speaker of the corpus. 

5.4.1. Comparative Results 

Table 2 displays the results of the different algorithms in the 
language identification task. Error rates are computed using 
the cross-validation approach for a total of 750 tests. 

Table 2: Error rates (cross-validation) 
for each algorithm 

Algorithm Error rate (%) 
DT 35 % 

MLP 21 % 
LDA 20 % 
GMM 21 % 

 
Except the Decision Tree that leads to 35 % of errors, all 

the algorithms reach about 80 % of correct identification. The 
first conclusion is that the automatic segmentation into 
rhythmic units is relevant for language identification. Using 
only this very basic cues (segmentation and durations) 
without any spectral features is already a relatively efficient 
way to discriminate among languages. However, the 
homogeneity of results with different approaches may signify 
that additional features will be necessary to improve those 
results. 

The matrix of confusion resulting from the GMM 
modeling (14 Gaussian components per language) is given in 
Table 3. The best results are reached for Spanish while the 
worst error rates are for Italian, with about one third of the 
items confused either with Spanish or English. 

Table 3: Matrix of confusion (in percent) with GMM. 
The average correct identification rate is 79 %. 

Model 
Item EN FR GE IT SP 

EN 68 2 12 13 5 
FR 2 84 7 - 7 
GE 13 - 85 2 - 
IT 14 - 4 67 15 
SP 3 3 - 3 91 

 

5.4.2. Speaker specific or Language specific rhythm units? 

One essential question that may be addressed using the 
rhythmic segmentation is to evaluate the inter-speaker and 



inter-language variability of the rhythmic units. In order to 
evaluate the speaker-specific part of the variability, additional 
experiments have been performed using to cross-validation 
strategies: 

In the first strategy (Random Selection), one tenth of the 
items are randomly selected without taking the speaker 
identity into account (thus, different sentences pronounced by 
the same speaker may be in both training and test corpora). 
The second strategy is based on a speaker selection for the 
cross-validation, resulting in no overlap at all between the 
training and the test corpora. Results are displayed in Table 4. 

Table 4: Comparison of the error rates in function 
of the cross-validation strategy. 

Algorithm Random 
selection 

Speaker 
selection 

DT 25 % 35 % 
MLP 16 % 21 % 
LDA 15 % 20 % 

 
Taking the identity of the speaker into account results in a 
decrease of the performances from 5 to 10 percent, depending 
on the algorithm. It means that the rhythmic units convey a 
significant part of the speaker identity as well as a language 
specific characterization. Thus, the pseudo-syllable may be 
considered as being correlated to the language rhythm and to 
the speaker own tempo. 

6. Conclusion and perspectives 
This paper develops one of the first approaches dedicated to 
rhythm identification of languages that is applied to a task 
more complex than paired language comparisons. The 
experiments performed with several algorithms on 5 
languages produce relatively good results (up to 80% of 
correct identification rate for 20-second utterances). That 
shows the relevancy of the rhythmic units extracted from an 
automatic segmentation. It is interesting to point out that the 
pseudo-syllable modeling manages to identify languages that 
belong to the same rhythmic family (e. g. syllable-timed 
rhythm for French, Italian and Spanish), indicating that the 
temporal structure of the pseudo-syllables is quite language-
specific. 

Experiments show also that, at this moment, the pseudo-
syllable modeling is dependent from the speaker-specific 
tempo. It means that speaker normalization may be necessary 
to improve the performances. Another improvement may be 
based on the use of acoustic correlates of sonority to reach a 
more accurate syllabic segmentation.  

Finally, it is important to note that this segmentation is the 
first step toward a real rhythm modeling that will be based on 
the modeling of the sequences of rhythmic units. 
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