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Abstract 
The utility of a model describing pitch profiles in speech 
signals is of fundamental importance in many application 
areas and  especially in natural-sounding text-to-speech 
system. Fujisaki-model [1] has shown considerable accuracy 
on many languages, despite its simplicity. The inverse 
problem, i.e. the extraction of the input parameters which 
generated an observed pitch contour, that could be of great 
interest in the field of automatic extraction of prosodic 
parameters from a given speech signal, is a much harder task. 
This paper suggests a method for input parameters estimation 
based on two steps: an initial guessing algorithm based on 
relative extremes, and a refinement procedure based on a 
gradient  optimization algorithm. Preliminary results of 
analysis/synthesis of pitch contours show excellent 
performance of the proposed method. 

1. Introduction 
One of the main difficulties in speech synthesis is to generate 
signals that have natural-sounding prosody. 
Even though prosody is attributed to intensity, intonation and 
duration profiles, it seems that in most languages intonation is 
the main contribute to prosodic information. In analysing a 
segment of recorded speech, intonation can be rather 
accurately described by the estimated pitch contour. 
A model describing pitch contours  would then be of extreme 
importance in speech processing. 
The Fujisaki-model [1] has shown, on tests performed on 
various languages [2][3][4][5] (but still more work needs to be 
done for Italian), a remarkable effectiveness in accounting for  
phrase and accent control events. This is a generative model 
(Fig. 1) that constitutes the best currently  known framework 
to study a prosodic profile. 
Even though the Fujisaki-model has been verified on hand-
labelled speech, an automatic procedure for inverting it, i.e. 
extracting the prosodic events from recordered speech seems 
still to be lacking. 
In this paper, after a short review of the model, we propose an 
inversion algorithm. The procedure starts from pitch profiles 
extracted from recorded speech and detects phrase and accent 
control excitation signals, effectively decomposing the speech 
profile into “elementary prosodic elements.” The effectiveness 
of the method is tested on a number of phrases. 

2. The Fujisaki-model 
H. Fujisaki and his co-workers proposed, between  the 70s and 
the 80s, an analytical model for the  control of the fundamental 
frequency (F0) variations [1][2]. This model, successfully 
tested on many languages [2][3][4][5], describes an F0 contour 
(plotted in a logarithmic scale) as the superposition of two 
contributes obtained by filtering two signals, here named x1 

and x2, with two linear systems. The former, which models the 
baseline component, accounts for speaker declination. The 
latter,  which models micro-prosodic variations, accounts for 
accent components. The Fujisaki-model is depicted in the 
block-diagram of Fig. 1. A constant term referring to the 
minimum frequency of the speaker is ignored. Fig. 2 shows an 
example of a generic F0-contour generated by the model.  
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The symbols in Figs. 1 and 2 are: 
 
x1- phrase-command input, composed by    
     Dirac-impulses; 
x2- accent-command input, composed  
      by rectangle-shaped pulses; 
y1- phrase-command contribute to ln(F0); 
y2- accent-command contribute to ln(F0). 
 
The system is ruled by the following equations: 
 

x1

x2

ln(Fo)

Fig. 2: Example of a generic F0 contour
generated by Fujisaki-model, with the
superposition of 3 phrase commands
and 5 accent commands. 
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Fig. 1: Fujisaki-model. 
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where 

)exp()( 2 tttg p αα −⋅=
  t≥0      (2) 

and 

)exp()1(1)( tttg a ββ −⋅+−=   t≥0 (3) 

respectively indicate the impulse response function of the 
phrase-control mechanism and the step response function of 
the accent-control mechanism.  

The symbols in Eqs. (1), (2) and (3) indicate: 

Fb - asymptotic value of the fundamental frequency in absence 
of accent-command; 
Np - number of phrase-commands;  
Na: number of accent-commands; 
Ap,k - magnitude of the kth phrase-command 
Aa,k - magnitude of the kth accent-command 
Tp,k - timing of the kth phrase-command 
T’a,k - onset of the kth accent-command 
T”a,k - end of the kth accent-command; 
α - natural angular frequency of the phrase control mechanism 
to the phrase-commands; 
β - natural angular frequency of the accent control mechanism 
to the accent-commands. 

3. Fujisaki-model inversion 
This work aims to propose an algorithm that can optimally  
reconstruct phrase and accent command signals for a given F0 
contour. The optimality criterion is invoked as an analysis-by-
synthesis procedure: the estimated input of the Fujisaki-model 
is recursively  fed back to the model to provide a better match 
to the measured contour profile. 
Since the Fujisaki-model produces continuous curves a first              
step is to ignore the unvoiced portions of the given F0 contour 
and interpolate the curve in these portions with voiced ones. It 
also appears appropriate to filter the obtained continuous curve 
with a low-pass filter just to remove high-frequency noise 
contribution  and quick and small pitch fluctuations.  
The idea on which the Fujisaki-model is based, is that phrase 
commands account for slow pitch variations while accent 
commands accounts for rapid ones. Some authors have 
approached the problem by differentiating or filtering F0 
contour with low-pass and high-pass filters to split the two 
components [6][7][8]. However, this approach has been shown 
to be more difficult than it seems: pitch contour spectrum is 
relevant only at very low frequencies, and the two 
contributions are not disjoint. 
The proposed algorithm executes a sort of filtering in a 
different way. Parameters α and β are considered to be 
constant for sake of simplicity and their values are fixed 
respectively to 3 and 20, as suggested by Fujisaki’s original 
model [1]. The glottal oscillation mechanism will be ignored. 
Fig. 3 shows an example of pitch contour, after interpolation 
and low-pass filtering, to be analysed for model inversion.  
A human observer will recognise the presence of just one or 
two phrase commands, giving a fast rise and a slow fall to the 

pitch contours showed in the figure. Phrase commands of pitch 
contour in Fig. 3c will be timed at t≈0 and eventually at t≈0.6, 
phrase commands of pitch contour in Fig. 3d will be timed at 
t≈0 and eventually at t≈0.8. Other fluctuations will correspond 
to accent commands. 
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The initial estimation is made by the guessing algorithm which 
works similarly to an observer looking for significative events 
on pitch contours. A similar approach was assumed in [9] for 
speech-energy contour processing aiming at syllable parsing. 
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Fig. 4.a (respectively Fig. 4.b) shows an example of phrase  
command  (accent command) and the corresponding output to 
the phrase control mechanism (accent control mechanism). 
Pitch contour has to be broken up into functions showed in 
Fig. 4 with dashed line, the latter contibute is superimposed on 
the former one. 
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Fig. 3: Examples of interpolated and
low-pass filtered pitch contour. 

Fig. 3c 

Fig. 3bFig. 3a 

Fig. 3d 

Fig. 5: Example of 1s dominant-maximum point
of a curve (timing of symbol ‘*’) and relative
maximum points which are not dominant
(timing of symbols ‘o’). 

Fig. 4: Example of phrase (Fig. 4.a) and
accent (Fig. 4.b) commands and their
contributes to pitch contour. 

Fig. 4a Fig. 4b



First the algorithm searches for phrase commands. From now 
on a point  t0 is called a T dominant-maximum point of the 
function f(t) if the two following conditions are verified: 

- t0 is a relative maximum point of f(t) 
- f(t0) ≥ f(t)  ∀ t∈ [t0-T/2,t0+T/2] 

Searching for phrase commands, the exponential shape of 
phrase-commands contributes to pitch curve suggests to 
operate as follows. Let { }N

kkDt
1,

=

 be the set of  Tp dominant-

maximum points of pitch contour; to locate the kth phrase 
command, the algorithm chooses the minimum point of pitch 
contour included in the interval [tD,k-1;tD,k], where tD,0 is the 
beginning time of the curve. Magnitudes of phrase commands 
are recursively chosen by comparing contribute of phrase 
commands generated by the Fujisaki-model with pitch 
contour, remembering that the former cannot exceed the latter 
(this assumption was assumed by J.M. Gutierrez-Arriola et al. 
[10] too). Choice of Tp must be accurate, for the role this 
parameter plays in the procedure is somehow like the one  that 
the inverse of cut-off frequency plays in low-pass filtering. 
Once phrase commands have been estimated, their contributes 
are subtracted from global pitch contour; the resulting curve 
must be described by accent commands. To locate onset and 
end of each accent command look at the Fig. 4.b. It shows a 
rectangle-shaped pulse (solid line) and the corresponding 
output to the accent control mechanism (dashed line). 
The onset of the command corresponds to the point in which 
the output starts rising, therefore the resulting curve shows 
most likely a minimum point. The end of the command 
corresponds to the point in which the output starts falling, 
therefore the resulting curve shows a maximum point. Based 
on these remarks the algorithm searches for Ta dominant 
maximum points of the resulting curve, locating the end of an 
accent command on each one of them. The corresponding 
onset will be located on the first previous relative minimum 
point. Appropriate values for Tp and Ta was suggested by the 
different role that phrase commands and accent commands 
play; Tp order of magnitude is 1 sec. , Ta order of magnitude is 
10 ms. Magnitudes of accent commands are chosen by 
comparing contribute of accent commands generated by the 
Fujisaki-model with the resulting curve. 
Onset, end and magnitude estimation of accent commands 
could be improved by a gradient-based procedure. 
Let r(t) be the residual curve of a pitch contour. Its initial 
estimation is: 
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where 
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Aim of the procedure is to minimize the cost function: 

∫ ⋅=ℜ dtte )(2     (6) 

where 

)(ˆ)()( trtrte −=     (7) 

Let p be the parameter vector so defined: 

[ ]
[ ]"

,
"

1,
'
,

'
1,,1,

1

,...,,,...,,,...,

,...,

aaa

p

NaaNaaNaa

N

TTTTAA

ppp

=

==

       (8) 

The vector is updated by the following rule: 
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The partial derivative of ℜ  are: 
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The cost function ℜ  is well-behaved with respect to the 
parameters { } aN
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and from experimental evidence it 

appears to be poorly convex with respect to the parameters 
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The results we report hold for an algorithm that refines only 
the magnitudes since we have found too critical to choose the 
appropriate step-size for time-parameters. 
Figs. 6 and 7 show the parametric stylization of pitch 
contours plotted respectively in Figs. 3c and 3d; in particular 
Figs. 6a and 7a show the phrase component, Figs. 6b and 7b 
show the accent component, Figs. 6c and 7c show the pitch 
contour to be stylized (dashed line) and the curve given by the 
Fujisaki-model stylization (solid line).  The utterances are 

Fig. 6a 

Fig. 6b 

Fig. 6c 

Fig. 6: Example of Fujisaki-model pitch
stylization (solid line) for a given pitch
contour (dashed line).

Fig. 7: Example of Fujisaki-model pitch
stylization (solid line) for a given pitch
contour (dashed line). 

Fig.7a 

Fig.7b 

Fig.7c 



respectively “Abbiamo preparato una torta.” and “Sta più 
sopra?”, uttered by male speakers. 

4. Results 
A software based on the previously described algorithm was 
realized and tested on 30 utterances of spontaneous speech 
uttered by an Italian male speaker, chosen in the corpus 
A.V.I.P. [11].  
Fig. 8 shows histograms of mean absolute error (Fig. 8a) and  
absolute error standard deviation (Fig. 8b) given by the tests. 
Pitch contour extracted from speech and Fujisaki-model 
stylization are compared in a halftones scale. 
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A first analysis of the results showed that estimated phrase 
commands seem to locate linguistic structures as tone units or 
phrases, while estimated accent commands seem to correspond 
to syllables.  

5. Conclusions 
Researches for modeling Italian intonation using the Fujisaki-
model are too few to compare results with manual estimation. 
In particular the investigation of which could be the real 
linguistic domain of the phrase and accent commands derived 
by our analysis is still missing. Future researches should 
clarify underlying relations between model parameters and 
Italian linguistic structures. This will be done by means of the 
comparison between prosodically hand-labelled data and 
output sequences of the realized program. The challenge to 
win is to “translate” former data (typically formatted in ToBI 
or other more or less similar labelling systems) in order to be 
comparable with the latter ones. 
Despite of its initial state of evolution, the present algorithm 
provides encouraging results. The guessing portion of the 
extraction procedure indicates that, within the speech signal, a 
sort of  “prosodic redundancy” can be extracted and used in 
order to mark events presenting particular significance. Even if 
this approach is heuristically based, its implication for a theory 
of categorization for the prosodic events is clear-cut. As 
mentioned above, here we used an approach similar to the one 

applied in [9] where a procedure was implemented for 
automatic segmentation of speech into syllabic units. Also in 
this case a relatively simple deterministic procedure, strongly 
based on the properties related to the sequence of maxima and 
minima within the temporal pattern of energy in the speech 
signal, was devised (this procedure is almost different from the 
one presented in [8]). The result of our work confirms that, in 
connected speech, prosodic features appear to be more stable 
and present than the segmental ones (see also [12]).  
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Fig. 8: Experiments on italian utterances.
Histograms of Mean Error (Fig. 8a) and
Error Standard Deviation (Fig. 8b). 
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