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Abstract

This paper focuses on the training process of intonation mod-
els for text-to-speech synthesis. In previous papers we con-
centrated on two key points of intonation modelling: interpo-
lation of fundamental frequency contour in unvoiced segments
and sentence-by-sentence parameter extraction. We proposed
an alternative approach for model training named JEMA (Joint
Extraction and Modeling Approach) using CART. Here we pro-
pose a new alternative to obtain the mapping function that re-
lates the linguistic features available in TTS and the fundamen-
tal frequency contour space. A clustering algorithm using a dis-
tance measure over a variable feature vector dimension space is
used to partition the space of fundamental frequency contours
in the training data. In this way we seek for important groups
of features with specific values that explain the shape of fun-
damental frequency contours. The proposed technique shows
improvements in the experimental results over CART.

1. Introduction
Prosody models play a fundamental role to achieve natural
voices in text-to-speech systems. Listening effort measure-
ments show that long synthetic speech fragments do not sound
natural for listeners. We need further work to achieve natural
and expressive synthetic voices.

The intonation model is one of the key prosodic models,
because it conveys important information about the meaning of
the message, speaker’s attitude, psychological and emotional
state, and idiosyncratic and sociolinguistic aspects.

Several intonation models have been proposed in the liter-
ature. In general we can differentiate several aspects of intona-
tion models:

• Mathematical formulation. Previous papers proposed
different mathematical formulations to describe the fun-
damental frequency contour using a compact representa-
tion: exponential (Fujisaki [1]), polynomial (Tilt [2] and
Bezier [3]), piecewise lineal (IPO) [4], etc.

• Parameter estimation procedure. Parameter extraction
procedures are related to the field of curve fitting using
optimization algorithms: gradient descent, genetic algo-
rithms, neural networks, etc.

• Model training algorithm. Intonation model training
consists in finding a mapping function that generates a
fundamental frequency contour (f0) given a set of fea-
tures (F ) extracted from the text available in a text-to-
speech system: G(F ) = f0 + e. In the case of data-
driven approaches this task is done minimizing the pre-
diction error (e) for the training data.

Here we focus in the model training step to find out a better
technique to obtain the function G(f), minimizing the error e

and improving the generalization.
In previous papers [5, 6, 7] we proposed using trees (CART)

to estimate this mapping function. This machine learning tech-
nique has the disadvantage of a greedy estimation of the solu-
tion and an orthogonal partition of the feature vector space.

In this paper we propose a clustering technique based on
feature vector matching using variable dimension (VFVDA:
Variable Feature Vector Dimension Approach). In this way we
obtain a more precise partition of the fundamental frequency
contour space analyzing all possible combinations of feature
vector values in the training data. The parameters are estimated
using an optimization algorithm over all training data.

In our previous work [8] we only use a few number of com-
binations obtained from a relevance analysis. Here we perform
an exhaustive study of the feature vector space. The chosen
mathematical formulation is superpositional. The components
are accent group and minor phrase.

In Section 2 we give a description of the parameter estima-
tion technique used in this paper. The intonation model training
algorithm is shown in Section 3. Experimental conditions and
results are shown in Section 4 using two intonation model train-
ing approaches: CART and VFVDA. Finally, conclusions are
included in Section 5.

2. Mathematical formulation and
parameter estimation procedure

The mathematical formulation chosen in this paper are Bèzier
polynomials. They are an adequate representation of the funda-
mental frequency contour shape. The coefficients can approx-
imate any contour with the desired precision by increasing the
degree of the polynomial. Additionally, each coefficient rep-
resents a specific location of the contour shape. In this way
we can easily analyze the contour shape by studying the coeffi-
cients. The approach is superpositional, with accent group and
minor phrase components.

The global optimization demands that each accent group
and minor phrase must belong to a class in order to decouple
correctly the two components. As a consequence, we may ob-
tain the optimal parameters for a given class using complemen-
tary information of its constituent contours. The missing fun-
damental frequency information due to unvoiced segments in
a given contour is complemented by the other contours of the
same class.

In this way we avoid the bias of sentence-by-sentence pa-
rameter extraction and the interpolation of unvoiced segments
(which may also introduce a bias depending on interpolation
and smoothing procedures).



Sentence-by-sentence parameter extraction may generate
inconsistent parameterizations for similar contours due to the
multiple solutions of some approaches, such as superpositional
Bèzier.

On the other hand, interpolation of unvoiced segments to
complete missing f0 data may introduce inconsistent informa-
tion that harms the extraction of parameters.

The mathematical formulation is shown in Equations 1, 2
and 3.
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Nk
MP is the number of minor phrases of the kth sentence.

Nk
AG is the number of accent groups of the kth sentence.

tk
MPi

(t) is the temporal axis of the ith minor phrase of the
kth sentence.

tk
AGj

(t) is the temporal axis of the jth accent group of the
kth sentence.

Ck
MPi

is the number of the minor phrase class assigned to
the ith minor phrase of the kth sentence.

Ck
AGj

is the number of the accent group class assigned to
the jth accent group of the kth sentence.

In this function, PMP and PAG are the Bézier curves of the
minor phrase and accent group components, respectively. Each
curve has its own associated time axis, tMP (t) and tAG(t). The
time axis range is zero to one. These curves are zero elsewhere.

The parameters are estimated using the cost function shown
in equation 4. The goal is to minimize the mean squared error.
This equation has a unique analytical minimum that is found
using a set of linear equations.
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where:

Ns is the number of sentences.
Tk is the duration of the sentence.

3. Model training
In Section 2 we shown the procedure to obtain the optimal set
of coefficients given a certain number of classes in the training
data. In this section we explain how these classes are found us-
ing features extracted from the text available in a text-to-speech
system.

Model training consists of finding a mapping function G

that predicts a suitable fundamental frequency contour (or a set
of parameters that are used to synthesize such contour) given a
set of features (F ). In this expression we included a prediction
error (e) that is minimized over the training process: G(f) =
f0 + e.

In the literature several algorithms have been proposed to
find this mapping function: classification and regression trees,
neural networks, instance based learning, etc [9, 10, 11].

In this section we explain two model training algorithms to
find the mapping function: CART and VFVDA.

3.1. Baseline algorithm: CART

CART is a training technique that uses trees to represent the par-
tition of the fundamental frequency contour space of prosodic
units (accent groups, minor phrases) given particular values of
their features. The main limitations are the orthogonal partition
of the feature space and the greedy nature of the algorithm.

The process of intonation model training using CART can
be summarized into these steps:

• Initialization. Initially only one class exists, because the
tree has only the root node. In this way, all prosodic units
(accent groups, minor phrases) will be represented by the
same set of parameters. These parameters are calculated
using a global optimization algorithm over all training
data.

• Splitting. Linguistic and paralinguistic features are used
to do questions in the tree to split training data. After a
new question is done, the training data will have two new
classes obtained from the splitting of the previous class.

• Optimization. When the new classes are obtained, a
global optimization algorithm is used to find the new op-
timal parameters. Depending on the parameterization,
this optimization step can be time consuming if the opti-
mal solution has not closed-form (e.g.: Fujisaki’s intona-
tion model). In such cases hill-climbing algorithms are
used to find the optimal solution.

• Scoring of the splitting. The new parameterization is
used to measure the improvement of the goodness mea-
sure compared to its value previous to the splitting.

• Selection of the highest improvement. After all pos-
sible splittings were tried, the one with the highest im-
provement is chosen and the tree is updated for the next
iteration.

• Stopping condition. The decision of another iteration
for an additional splitting is performed taking into ac-
count a minimum number of elements on each leaf and a
minimum improvement of the goodness score.

CART are generally chosen because they allow the use of
discrete and continuous features. Furthermore, the represen-
tation provides useful information to increase the knowledge
about the task. This information can be used for future improve-
ments of the system.



In the next section we explain VFVDA, another machine
learning technique that also provides useful information about
the problem.

3.2. Proposed algorithm: Variable Feature Vector Dimen-
sion Approach (VFVDA)

It is known that some features have an extreme influence in
pitch contour shape for certain values, e.g: last accent group
in an interrogative sentence, first accent group in an interroga-
tive sentence with an interrogative pronoun, emphasized word
in an accent group, etc. Some other features in the feature vector
may be ignored in such cases because its influence in the con-
tour shape is insignificant. It is very important to find a training
algorithm that focuses in these aspects even when the frequency
of occurrence is low in training data. Data scarcity is an impor-
tant problem in intonation model training and rare events need
to be modelled as well as frequent events [12]. The variable
feature vector dimension approach is a step in that direction.

Here we propose a training approach using exact matching
with variable feature vector dimension. We explore all possible
combinations of feature vector values for any possible dimen-
sion. Our goal is to find a group of feature vector patterns that
define the membership of pitch contours to a given class. In
this way we will explain pitch contour shapes related to some
particular values in the features.

Given the superpositional mathematical formulation, it is
necessary to succesively refine the accent group and minor
phrase components in separate steps. In this way we will avoid
a significant growth in the number of combinations of features.

The steps of the training procedure are:

1. Initialization. In the initial condition we suppose that
no class exists.

2. Generation of all possible combinations of feature
vector values and dimensions for accent groups and
minor phrases. All possible feature vector values are
explored for any possible dimension. This procedure
will show us how complex will be the exhaustive search
of the optimal classes. The combinations of values with
a number of elements below a threshold are not consid-
ered. They do not have enough data to obtain a reliable
estimation of the class pattern.

3. Candidate feature vector pattern (minor phrases).
Each possible combination generated in the previous
step is considered a candidate feature vector pattern (fea-
ture vector that represents a pitch shape class). In this
step the candidate is added to all previously found fea-
ture vector patterns to explore the error reduction pro-
duced by its inclusion. The feature vector patterns are
explored from dimension one until the maximum dimen-
sion. A dimension is only studied when the previous di-
mension does not produce any improvement in the global
RMSE.

4. Assignation (minor phrases). Each feature vector in the
training data is assigned to the class of a feature vector
pattern if the values of the features exactly match. When
a feature vector matches the feature vector pattern of sev-
eral classes, we consider it belongs to the class with the
higher dimension (more specific description of feature
vector values).

5. Best feature vector pattern (minor phrases). Optimal
Bezier coefficients for each class are found using the

algorithm described in Section 2. RMSE is calculated
for all training data. The feature vector pattern with the
highest error reduction is added to the feature vector pat-
terns for the next iteration.

6. Steps 3, 4 and 5 are repeated for accent groups.

7. Stop condition. The algorithm stops when it is not pos-
sible to generate classes with a number of samples higher
than a predefined threshold (20 in our experiments) or
the RMSE reduction is lower than a predefined threshold
(0 in our experiments).

The proposed algorithm is exhaustive and the training may
take several hours depending on the available training data and
the number of features and their combinations. However, the
resulting model can be used in real-time situations because it
only consists in a lookup table with few entries.

In the next section we will show experimental results of
our proposal compared with another intonation model training
approach.

4. Experiments
4.1. Experimental conditions

The experiments were performed using the male baseline Span-
ish voice of the European Project TC-STAR. The data are para-
graphs from the parliamentary domain. Due to the restriction of
the corpus to ten hours of speech recorded from one speaker,
it was decided to focus mainly on coverage of phonetic and
prosodic variations. The voice should therefore sound as being
uttered by a competent translator speaking in a rather neutral
manner.

Two different approaches for intonation model training are
compared in these experiments. All of them use the same math-
ematical formulation: Bèzier coefficients. The difference be-
tween them lies in the training procedure:

• Bezier (CART). The intonation model is trained using
CART proposed in Agüero et al [5].

• Bezier (VFVDA). The intonation model is trained using
the Variable Feature Vector Dimension Approach pro-
posed in Section 3.

The idea is to study the performance of our current proposal
(VFVDA) compared with our previous approach (CART). It is
expected that VFVDA will outperform CART due to a more
precise analysis of the feature vector space.

4.2. Experimental results

The experimental results are presented in Table 1. We divided
the corpus into ten fragments to do 10-fold cross validation ex-
periments. The first columns show the RMSE (using log-Hz)
for test data using the different approaches. The last column
shows the gain in RMSE of VFVDA over CART for each fold.

VFVDA explains better test data because in all cases there
is a gain in the RMSE. Gains range from 0.005 to 0.0016 in the
sixth fold. These results support the use of VFVDA over CART
because it systematically provides better results for unseen data.

Anyway, the proposed technique has some limitations that
harm its performance:

• Speaker variability. Given a feature vector pattern, all
pitch contours of that class are represented by the same
pitch contour shape. However, speakers may perform
some variations to the contour without a reason. This is



CART VFVDA Gain
0.0962 0.0957 0.0005
0.1032 0.1026 0.0006
0.0996 0.0988 0.0008
0.1014 0.1000 0.0014
0.0996 0.0988 0.0008
0.0963 0.0947 0.0016
0.0975 0.0964 0.0011
0.0945 0.0940 0.0005
0.0950 0.0940 0.0010
0.0978 0.0971 0.0008

Table 1: Experimental results for test data using CART and
VFVDA.

an intrinsic limitation of intonation model training and
evaluation.

• Missing training features. It is not possible to gener-
ate all necessary features to explain pitch contour shape.
Aspects like semantics, pragmatics, dialect, etc., may in-
troduce a variability that may not inferred from the lim-
ited training data available in any task of intonation mod-
elling.

• Limitations in the training procedure. The training
approach proposed in this paper successively finds the
best feature vector patterns. This procedure may produce
a suboptimal solution because of local decisions (choos-
ing the best feature vector pattern in an iteration) that
does not take into account future decisions.

5. Conclusions
This paper describes a new approach for intonation model train-
ing. Here we faced problems detailed in previous papers such as
fundamental frequency contour interpolation of unvoiced seg-
ments, parameter extraction bias, and the important limitation
of data scarcity.

We proposed an exhaustive search algorithm for optimal
feature vector pattern extraction: Variable Feature Vector Di-
mension Approach (VFVDA). This algorithm was compared
with another training technique: CART.

The proposed algorithm has better performance than CART
for the test data, encouraging its use for intonation model train-
ing. VFVDA provides a better generalization in our experi-
ments.

The data used in this paper is pronounced in a rather neutral
manner. In the future we will focus on using more expressive
data in order to study the relevance of the different features in
such situation.
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[4] Hart, J.; Collier, R.; Cohen, A., 1990. A perceptual
study of intonation. An experimental approach to speech
melody. Cambridge University Press.
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