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Abstract 
In this paper, a joint prosodic and spectral modeling 
framework is proposed instead of traditional score-domain 
fusion approaches to alleviate the problem of mismatch 
channel/handset/ambient noise. The basic idea is to embed the 
concept of hierarchical structure of speech prosody into an 
ergodic HMM (EHMM), and model the prosodic status 
transitions and prosodic/spectral features by EHMM’s states, 
state transition probabilities and state-dependent observation 
distributions, respectively. Experimental results evaluated on 
the standard single-speaker detection task of NIST 2001 
speaker recognition evaluation (NIST-SRE 2001) showed that 
the proposed approach not only outperformed the spectral 
feature-based baseline (8.04% vs. 8.64% in equal error rate, 
EER) but also worked a little bit better than score-domain 
fusion ( 8.44%) approach. 

1. Introduction 
One of the most important issues for speaker verification is 
the channel/handset/ambient noise mismatch problem. To 
address this problem, higher level information such as the 
prosodic cues of a speaker, which may be less sensitive to 
those mismatch, are attractive recently. For example, several 
works [1-3] have shown there is a significant benefit to 
combining prosodic and spectral features. 

General speaking, there are three different methods to 
combine the prosodic and spectral cues including (1) feature-, 
(2) model- and (3) score-domain fusions. Among the three 
approaches, feature-domain fusion is the most intuitive way. 
It usually explores the relationship between the per-frame 
mel-frequency cepstral coefficients (MFCCs) and 
pitch/energy contours by directly concatenating them into a 
single vector stream to build a single model. Score-domain 
fusion [1-2] is the most popular and successful strategy. But it 
often ignores the dependency between prosodic and spectral 
cues and independently establishes one system for one 
information source. On the other hand, studies on model-
domain fusion [3], especially joint modeling of the prosodic 
and spectral information, are still rare (at least for speaker 
recognition). 

However, model-domain fusion may be a promising way 
to explore the interaction between prosodic and spectral cues, 
because an utterance usually can be tokenized into many 
smaller constituents in different prosodic levels, such as 
prosodic phrases, words and syllables. According to the recent 
studies in [4], these units can be hierarchically organized as 
shown in Fig. 1 where the lower level nodes are subjacent 
units subject to higher level constraints. In other words, the 
lower level prosodic and spectral characteristics (prosodic 
phrase, word or syllable) are susceptible to the higher level 
organization (prosodic utterance, phrase or word, 
respectively). For example, a typical trajectory of F0 contours 
of an utterance is shown in Fig. 2. 
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Figure 1: A schematic representation of the hierarchical 
structure of speech prosody. 
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Figure 2: A schematic illustration of the trajectory of 
perceived F0 contours of an utterance. 

Therefore, in this paper, a joint modeling framework is 
proposed that utilizes the concept of hierarchical structure of 
speech prosody to capture the relationship between spectral 
and prosodic cues to alleviate the problem of mismatch 
channel/handset/ambient noise. The basic idea is to embed the 
hierarchical structure of speech prosody into an EHMM (i.e., 
prosodic state-embedded EHMM, PEHMM). In this 
framework, an utterance is tokenized into many small 
segments and three levels of prosodic features are extracted 
and modeled including (1) supra-segment- (prosodic 
phrase/word), (2) segment- (prosodic word/syllable) and (3) 
frame-level features. 

In more detail, let the states of the PEHMM (called 
prosodic state from now on) represent the position of a lower 
level unit inside a higher level one, such as the beginning, 
middle or ending of prosodic phrase/word. And the 
distributions of observations, such as the per-segment 
prosodic and per-frame prosodic/spectral features, of lower-
level units in different positions are prosodic state-dependent. 
Moreover, the transition of prosodic status is modeled by the 
prosodic state transition probability matrix of the PEHMM. 

This paper is organized as follows. Section 2 describes the 
proposed joint prosodic and spectral modeling framework. 
Section 3 discusses the speaker verification task and the 
procedures to initialize and optimize the PEHMMs. Section 4 
reports the experimental results on NIST-SRE 2001 corpus 
[5]. Some conclusions are given in the last section. 

2. Joint prosodic and spectral modeling 
Fig. 3 shows the proposed joint prosodic and spectral 
modeling framework. There are two main modules including 



(1) tokenization front-end and (2) prosodic state-embedded 
EHMMs (i.e., PEHMMs). 

In this framework, an input utterance is tokenized into 
smaller prosodic units to extract multi-level features including 
the per-segment prosodic features, per-frame pitch/energy and 
spectral features. In addition, a set of prosodic states is 
introduced and embedded into EHMMs to represent the 
hierarchical structure of speech prosody (as shown in Fig. 1).  

The main goal of utilizing the set of newly introduced 
prosodic states is to link the interaction between spectral and 
prosodic features. 

2.1. Tokenization front-end 

The block diagram of the tokenization front-end is shown in 
Fig. 4. It firstly extracts the raw prosodic contours (pitch and 
energy) of an input utterance. The pitch and energy contours 
are then segmented into smaller units (close to a syllable) by a 
piece-wise stylization algorithm. The stylization output is a 
sequence of voiced/unvoiced tags and segment boundaries. 

Assuming there are N  segments, their corresponding 
stylized contours are used to extract N  sets of segment-level 
prosodic features, { }1 2, ,F F , NF=F … . 

For each voiced segment, nine segment-level prosodic 
features are extracted include the duration of the segment, the 
slopes of the pitch and energy contours, left- and right-hand-
side pitch and energy jumps and pause durations. 

Frame-level features include the per-frame pitch/energy, 

{ },1 ,2 ,, , ,
nn n n n Tρ ρ ρ=ρ … , and spectral features, 

{ },1 ,2 ,, , ,
nn n n n TX X X=X … . 

On the other hand, for each unvoiced segment, only its 
duration are utilized. 

The output of the tokenization front-end is therefore a 
sequence of multi-level features, 
{ } ( ){ }, , , , , 1 ~n n n n N= =X ρ F X ρ F , to represent the prosodic 

and spectral dynamics of input speech in both the frame and 
segment levels. 

2.2. Prosodic state-embedded EHMM 

In this study, a PEHMM-based generative model is adopted 
since it is not easy to directly model the joint distribution, 

, of the multi-level prosodic and spectral features. ( , ,P X ρ F)
Fig. 5 shows the block diagram of the proposed PEHMM 

where the hierarchical structure of speech prosody is modeled 
by (1) a set of prosodic states, { }1 2, ,..., Qq q q=q

( )q

, and their 

state transition probabilities, P , and (2) state-dependent 

distributions, , of the multi-level features. The 
likelihood function of a PEHMM is hence defined as follows: 

( , , |P X ρ F q)

( ) ( ) (, , , , |P P=∑
q

X ρ F X ρ F q q)P⋅

1

 (1) 

Moreover, the state transition probabilities in Eq. (1) are 
further simplified and modeled as a prosodic state bi-gram 
model: 

( ) ( ) ( )1
2

|
N
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n
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=
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Figure 3: The proposed joint spectral and prosodic 
modeling framework for robust speaker verification. 
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Figure 4: The block diagram of the tokenization front-end 
for segmenting an input utterance into smaller units and 
extracting the corresponding multi-level features 
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Figure 5: The block diagram of the proposed prosodic 
state-embedded EHMM (PEHMM). 

 

The distributions of ,  and of the  n -th segment in a 
specific state, , are assumed to be independent of each other, 
i.e., 
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And the three terms on the right hand side of Eq. (3) are all 
represented by state-dependent Gaussian mixture models 
(GMMs) in this study: 
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3. PEHMM-based speaker verification 
For speaker verification task, a universal background 
PEHMM (UBM), , is first trained using all available 
training utterances of many speakers (usually hundreds of 
speakers). The UBM represent the average prosodic and 
spectral dynamic characteristics of all non-target speakers. In 
addition, one PEHMM,

UBMΦ

sΦ , is built for each target speaker by 
adapting the UBM using the maximum a posteriori (MAP) [6] 
algorithm and his corresponding training utterances. The 
speakers’ PEHMMs, { }, 1 ~s s S=Φ , therefore represent the 
speaker-specific behaviors of the target speakers. 

The decision rule for the speaker verification task is based 
on the log-likelihood ratio test and defined as follows: 

( )
( )

0

1

, , |
, log

, , |
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s
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H

P
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P

⎛ ⎞Φ≥
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X ρ F
X ρ F

⎟⎟  (5) 

where s  is the claimed speaker in a trial,  and  are the 
null and alternative hypotheses, respectively. In the following 
subsections, two implementation issues will be discussed 
including the PEHMM (1) initialization and (2) optimization. 

0H 1H

3.1. PEHMM initialization 

To build the UBM, , and speaker PEHMMs, , an 
automatic prosodic state labeler is necessary to first convert 
the input segment prosodic feature vectors into a sequence of 
prosodic states in order to calculate the prosodic state bi-gram 
and initialize all prosodic state-dependent parameters as 
defined in Eqs. (2) and (4), respectively. 

UBMΦ SΦ

Usually, to learn the relationship between the prosodic 
features and prosodic states, a classifier that is trained with 
supervised training using manually annotated prosodic 
feature-state pairs is required. For example, tones and break 
index (ToBI) annotation and artificial neuron networks 
(ANNs) are often adopted. However, manual annotation is 
always labor intensive and expensive. 

Therefore, an unsupervised vector quantization (VQ) is 
utilized to automatically learn a codebook from the training 
data of all speakers. Because the segment prosodic features 
are used to capture prosodic events, each codeword in the 
codebook may represent a specific prosodic status. The VQ 
codebook is then used to automatically label each input 
utterance of a speaker into a sequence of prosodic states. 

3.2. PEHMM optimization 

Once the PEHMMs are initialized, the segmental K-mean 
algorithm (for simplifying the computation) is applied to 
iteratively fine-tune the UBM and all speaker models. The 
procedures to optimize a speaker model  (it is similar for 
UBM) are shown as follows: 

SΦ

Step 1: re-label all training utterances using Viterbi search 
algorithm to find the best prosodic state sequences: 

( ) ( ){ }ˆ max , , | , |s sP P= ⋅
q

q X ρ F q Φ q Φ  (6) 

Step 2: re-estimate the parameters of the speaker PEHMMs 
according to the found prosodic state label 
sequences given in Step 1. 

Step 3: go to Step 1 until converged. 

T qual error rate, EER in able 1: Comparison of performance (e
%) of various systems evaluated on the standard one speaker 
detection task of the NIST-SRE 2001.  Here PD means 
“prosodic state-dependent”. 

System EER (%) 
(1) Spectral GMMs   8.64 
(2) Pitch/energy GMMs 28.62 
(3) Prosodic GMMs 31.65 
(4) Prosodic State bi-gram 35.78 
(5) PD spectral GMMs    8.28 
(6) PD pitch/energy GMMs  28.61 
(7) PD prosodic GMMs  31.89 
(8) Scoring fusion (1)+(2)+(3)+(4)    8.44 
(9) PEHMM (4)+(5)+(6)+(7)    8.04 

 

4. Experimental results 

4.1. Eval a ion c rpus and experimental settings 

ated 

stems and score-domain fusion 

m the 

r of the VQ-based 
used to initialize the proposed 

PEHMM and the prosodic state-dependent GMMs are first 
built and examined, respectively. The experimental result of 
the proposed PEHMM is reported in the end. 

 

u t o

All experiment results presented in this paper were evalu
on the standard one speaker detection task of NIST-SRE 2001 
using only the basic evaluation corpus, i.e., no extended data 
were used. In this task, there are in total 174 target speakers. 
Each speaker comes with two minutes of enrollment speech. 
Besides, there are 2,038 target and 20,380 imposter trials, 
respectively. Each trial is about 30 seconds long, on average. 

In all experiments, 38 spectral features, including 12 
MFCCs, 12 Δ-MFCCs, 12 Δ2-MFCCs, Δ-log-energy and Δ2- 
log-energy were computed with window size of 30 ms and 
frame shift of 10 ms. Cepstral mean subtraction and variance 
normalization were utilized to partially resist the 
channel/handset distortion. As prosodic features, the raw pitch 
and energy contours were extracted using the Snack Toolkit 
(ESPS’s get_f0 function). Moreover, all the fusion weights 
were empirically set. 

4.2. Four baseline sy

A 1024-mixture spectral feature GMM is first built fro
enrollment speech of all 174 speakers. Then, one MAP-
adapted GMM (MAP-GMM) was estimated for each speaker 
using the speaker’s own enrollment speech. The per-frame 
pitch/energy features and segment prosodic features were 
modeled using 128- and 32-mixtures GMMs, respectively. In 
addition, 8 voiced and 3 unvoiced codewords were learned in 
the VQ codebook and an 11-state bi-gram model was trained. 

The experimental results, i.e., EERs of the four baselines 
were shown in Table 1. The EERs of the per-frame spectral, 
pitch/energy, segment prosodic features GMMs and prosodic 
state bi-gram are 8.64%, 28.62%, 31.65% and 35.78%, 
respectively. Table 1 also shows the result of fusing the scores 
of the four systems. The combined system gave an EER of 
8.44%. These results demonstrate that the prosodic and 
spectral information complement each other. 

4.3. Proposed PEHMM joint modeling 

I h
automatic prosodic state labeler 
n t e following subsections, the behavio



4.3.1. Analysis on learned prosodic states 
 

4.3.1.1. Justification of the automatic prosodic state labeling  
 

First, the codewords of the VQ-based automatic prosodic state 
lab r learned from the enrollment speech of all speakers is 

relations of those 
codewords and the transition matrix of the labeled prosodic 

diagram was created, which is shown in Fig. 7. 

nd MinPhEnd 
(St

te-dependent GMMs 
 

The EERs of these prosodic state-dependent GMMs are 

f the spectral GMMs could be improved from 8.64% to 

e case for per-frame pitch and energy 
con

es that the proposed 
EHMM approach not only outperformed the spectral GMMs 

 little bit better than the score-
domain fusion one (8.44%). The reasons for the relatively 

NIST-SR outperformed the 
spectral G  the score dom

100-MY2. 

ele
shown in Fig. 6. By cross-examining the 

state sequences, a meaningful prosodic state transition 

These 11 codewords may be interpreted (post-hoc) as 11 
different prosodic states that represent, respectively, one 
major and one minor prosodic phrase-start state (MajPhStart 
(State 3) and MinPhStart (State 7) with longer left-pause, 
energy, and pitch jump up), one major- and one minor-
prosodic phase-end state (MajPhEnd (State 5) a

ate 2) with longer right-pause and pitch jump up), four 
transient states (Trans (States 1, 4, 6, and 8)), and short, major 
and minor breaks (States 9, 10 and 11). 

This state diagram may represent the typical prosody 
behaviors of all seen speakers in the training set. Therefore, 
any speaker-specific deviation from these typical behaviors 
may be used as the informative cues for speaker recognition. 
 
4.3.1.2. Effectiveness of the prosodic sta

Given the prosodic state tags, all training material was divided 
to build the prosodic state-dependent spectral, pitch/energy 
and prosodic GMMs. 

shown in Table 1. From the table, it was found that the EER 
o
8.28%. This result indicates that the characteristics of spectral 
features may be different in different prosodic states. 
However, it is not th

tours and segment prosodic features. 
 
4.3.2. Experimental results 

 
Finally, the experimental result of the proposed PEHMM joint 
modeling framework is also shown in Table 1 and EER of 
8.04% was achieved. This result indicat
P
(8.64%) but also worked a

small improvement may be that Viterbi search was applied 
(instead of a forward-backward algorithm) to compute the 
likelihoods. Beside, more iterations or even Baum-Welsh re-
estimation may be needed to further improve the performance. 

5. Conclusions 
In this paper, a joint prosodic and spectral modeling 
framework, PEHMM, is proposed to alleviate the problem of 
mismatch channel/handset/ambient noise. Experimental 
results evaluated on the standard one-speaker detection task of 

E 2001 showed that PEHMM 
MMs and were comparable with ain 

fusion method. It is therefore a promising approach 
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Figure 6: The centroids of the vector quantization codebook 
learned from the enrollment speech of all speakers in the 
training set of NIST-SRE 2001. 
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Figure 7: The major prosodic state transition flow of the VQ-
based automatic prosodic state labeler learned from the 
enrollment speech of all speakers in the training set of NIST-
SRE 2001 
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