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Abstract 
The paper analyzes both acoustic and linguistic features with 
different Chinese prosodic boundaries. Then a rule-learning 
approach was used to do the prosodic boundary labelling. In 
the paper the prosodic boundaries are classified into four 
levels, full intonational boundary with strong intonational 
marking with/without lengthening or change in speech tempo, 
prosodic phrase boundary with rather weak intonational 
marking, prosodic word boundary and phone foot boundary. 
Candidate acoustic and linguistic features related to prosodic 
boundary were extracted from the corpus to establish an 
example database. Based on this, a series of comparative 
experiments is conducted to collect the most effective features 
from the candidates. Results show that the selected candidates 
characterize the boundary features efficiently. Final 
experiments show that rule-learning approach introduced in 
the paper can achieve better prediction accuracy than the non-
rule and RNN based methods and yet retain the advantage of 
the simplicity and understandability 

1. Introduction 
When people make speech communication, the information 
they exchanged includes not only the speech wave of the 
phones but also the structure of how the speech wave is 
organized. Here, we say that the speech is organized to a 
certain structure means that, each sentence of the speech was 
divided into several blocks by breaks, and each block include 
many phones, which has a certain duration mode. Such 
structured information was commonly called by prosodic 
rhythm. It cover the features of duration, intensity and pitch, 
which reflect speaking rate, accent and tone. Prosodic rhythm 
is very important both for the naturalness of the utterance but 
also for understanding the utterance. It makes it possible to 
divide a long utterance to some short prosodic phrases, which 
are more suitable for understanding by people or processing 
by computer. The break mode of the utterance provide 
important cue for syntactic disambiguation. For these reasons, 
research on prosodic rhythm is widely noticed in the field of 
speech synthesis and speech understanding. Prosodic phrase 
boundary location is a basic problem in the field of prosodic 
rhythm research. 

A lot of methods have been introduced to predict prosodic 
phrase such as Classification and Regression Tree (Wang and 
Hirschberg, 1992, Yao and Min, 2001, Shen and Tao, 2003), 
Hidden Markov Model (Paul and Alan, 1998), Recurrent 
Neural Network (Ying and Shi, 2001). They pointed out that 
there is a tight relationship between the syntactic structure and 
the prosodic structure. In their work, they try to map prosodic 
boundaries with lots of linguistic information, such as part of 
speech, word length, sentence length, position, etc. It works 

efficiently in some TTS systems. But it is well known that the 
syntactic structure is not the only factor to determine the 
prosodic structure. Many others also studied the acoustic 
parameters. Li (2000) presented some statistic result of 
prosody on dialogue. The syllabic duration, accent and F0 
range for stressed and unstressed syllable are statistically 
analyzed respectively. Lin (2000) showed the relation 
between breaks and prosodic structure. He pointed out that 
there are two types break can be apperceived in mandarin 
speech: break with silent pause and break with filled pause. 
Pause is always created by major break, the syllable before 
the break has an elongate duration and the pitch has a 
transition from the syllables before the break to the syllable 
followed. And distinguish between minor and major break is 
the range of F0. 

Since both acoustic and linguistic information provide 
important cue in prosodic phrase boundary detection, the 
principle idea in our work is to combine them together and 
build them into the prosodic boundary labelling system. The 
whole paper was organized as following. Section 2 introduces 
the corpus used in the paper. Both acoustic and linguistic 
features related to prosody boundaries are analyzed. Section 3 
describes the method for prosody boundaries labelling and 
evaluation. In section 4, candidate acoustic and linguistic 
features related to prosodic boundary were extracted from the 
corpus to establish an example database. Based on this, a 
series of comparative experiments is conducted to collect the 
most effective features from the candidates. Section 5 
presents some evaluation and discussion of the labelling 
system. 

2. Corpus and features 

2.1. Data Corpus 

To do the research, a large mandarin speech corpus, designed 
for synthesis and labelled with prosodic ties, is used in our 
research. The corpus contains 601 sentences and around 9000 
syllables. It was read by 4 speakers, in which two are men and 
two are women. All are standard mandarin speakers. The 
speech was labelled with syllable in SAMPLA-C system, and 
labelled prosody accent, boundary and tone in C-ToBI system. 
In the corpus, prosodic boundary was labelled by B0, B1, B2, 
B3. They are,  

 B3: full intonational boundary with strong intonational 
marking with/without lengthening or change in speech 
tempo. 

 B2: prosodic phrase boundary with rather weak 
intonational marking. 

 B1: prosodic word boundary. 
 B0: phone foot boundary (default, not marked 

explicitly). 



Normally, B3 related to the sentence mark such as comma, 
full stop, etc. It could be easily determined by them. 
Therefore, the following work will only be focused on the 
labelling of B0, B1 and B2.  

2.2. Features 

Normally, acoustic features are extracted from the specific 
speech signal interval that belongs to the prosodic unit, 
describing its specific prosodic properties, and can be fed 
directly into a prosodic boundary classifier. Within this group 
we can further distinguish as follows.  

 tF max,0 , tF min,0 , tmeanF ,0 , trangeF ,0 : Minimum, maximum, mean 
and range of fundamental frequency (F0) of the syllable 
previous to current break. 

 tF max,0∆ , tF min,0∆ , tmeanF ,0∆ , trangeF ,0∆ : Differential of 
minimum, maximum, mean and range of fundamental 
frequency (F0) in the specific context on break t. For 
example, 1max,max,max, 000 −−=∆ ttt FFF  

 tDF : deviation of F0 in break t. 

 
Figure 1 The F0deviation and silence in break t 

 tsilenceD , : Duration of silence between syllable t and t+1. 
 tBD ,0 , tBD ,1 , tBD ,2 , tBD ,3 : Distance from the last break B0, B1, 

B2 and B3.  
 R : Speaking rate.  
 tmeanE , : Mean energy of the syllable previous to current 

break 
 tmeanE ,∆ : Differential of mean energy of the syllable in the 

specific context on the time axis. 
1,,, −−=∆ tmeantmeantmean EEE  

Table 1 lists the mean values and standard deviation of the 
acoustic features from the corpus.  

Table 1 The mean value and standard deviation of acoustic 
features in one speaker’s data 

B0 B1 B2 Feature 

Mean Devia

tion 

Mean Deviation Mean Deviati

on 

tsilenceD ,  (ms) 4.1 18 16.2 22 26.1 67 

tF max,0 (HZ) 260 79 243 81 182 75 

tF min,0 (HZ) 121 42 119 61 118 36 

tmeanF ,0 (HZ) 230 84 210 83 180 76 

trangeF ,0 (HZ) 130 68 109 64 78 58 

tF max,0∆ (HZ) 18 31 -2.3 26 -5 24 

tF min,0∆ (HZ) 6 23 0.2 21 3 20 

tmeanF ,0∆ (HZ) 2.3 21 -5 14 -18.1 12 

trangeF ,0∆ (HZ) -3.2 58 -8 42 -10.3 36 

tDF (HZ) 7.8 23 27.3 32.1 52 42.1 

tBD ,0 (ms) 182 79 191 89 212 91 

tBD ,1 (ms) 276 170 418 280 653 343 

tBD ,2 (ms) 623 426 620 345 1240 411 

tmeanE ,
 62 12 52 11 51 12 

tmeanE ,∆  5 3 -1.2 3 -1 4 

On the other hand, prosodic information is highly 
interrelated with ‘higher’ linguistic information, i.e., the 
underlying linguistic information strongly influences the 
actual realization and relevance of the measured acoustic 
prosodic features. In this sense, we speak of linguistic 
prosodic features that can be introduced from other 
knowledge sources, as lexicon, syntax or semantics; usually 
they have either an intensifying or an inhibitory on the 
acoustic prosodic features. The linguistic prosodic features 
can be further divided into two categories, lexical prosodic 
features and linguistic prosodic features.. 

Due to the lack of sophisticate method in syntactic and 
semantic parsing, we do not consider syntactic/ semantic 
prosodic features in the work, but some basic linguistic 
information which could be acquired easily and reliably. They 
are, 

 tT :  Syllable tone previous to current break. 
 tPOS :  Part of speech of the word previous to current 

break.  
 twordL , , sentenceL , tBL ,1 , tBL ,2 :  Length of previous lexicon word, 

length of sentence, length from the previous break B1 
and B2. They behave as the limitation features.  

With these parameters, it is still an open question, which 
prosodic features are the most relevant for the classification 
problems and how the features are interrelated. We therefore 
try to be as exhaustive as possible, and leave it to the 
classifier to find out the relevant features and the optimal 
weighting of them. This part of work will be described in 
section 4. 

3. CART model based prosody boundary 
labeling 

3.1. Method 

To generate a system, rules always the easiest method. It 
has some obviously advantage of simplicity and 
understandability. But for a large database, the rules might be 
changed or, at least, have to be adapted to new data set. 

The automatic classification and regression tree (CART) 
is an effective method to solve the problem. Suppose we have 
a string of acoustic and linguistic features: Tfff ,..., 21 , the 
boundary between 1, +tt ff  is labelled as B0, B1, B2, B3. 
Assume the label of a boundary is determined by its 
contextual linguistic information and neighboured acoustic 
information represented by a feature vector tF , prosodic 
boundaries can be viewed as a classification problem that in 
essence can be handled with any trained classifiers, taking the 

feature vector tF  as input and giving the most probable 
boundary label as output. 

In order to reduce the computing complexity, all of 
features are normalize to a certain range 0~1. The stop 
criterion of CART is, 
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Where, b : Number of branches of the node, nb : The 

sample instances in branch b, nt : Total number of instances in 
all branches, nbc : Number of instance of class c in branch b, 
c : Number of class. The later part in bracket of (1) is the 
entropy of the branch. So the stop criterion is when the C less 
than a certain valve, or the reduction of C less than a valve 
after a splitting process, otherwise split the node. 



3.2. Evaluation Parameters 

As a classification task, prosodic boundary prediction should 
be evaluated with consideration on all the boundary labels. 
The rules induced from examples are applied on a test corpus 
to predict the label of each boundary. Compared to manual 
labelling results, it is easy to generate a confusion matrix 
shown as follows: 

Table 2  Confusion matrix 
Predicted labels True labels  

B0 B1 B2 
B0 C00 C01 C02 
B1 C10 C11 C12 
B2 C20 C21 C22 

Cij are the amount of boundaries whose manual labelling 
is Bi but predicted as Bj. Then, the evaluation parameters for 
prosodic phrasing can be got as. 
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icRe  is the recall rate of boundary label Bi. iePr  defines the 
precision rate of Bi. 

4. Feature Selection 
The purpose of the labelling scheme is not only to optimize a 
stand alone prosodic classification but to optimize its 
usefulness for acoustic and linguistic analysis in particular. 
There are many acoustic and linguistic cues for prosodic 
boundary location. But from discussion and statistic results in 
section 2, it shows not all of the acoustic parameters do the 
same effect on the prosody boundaries.  Feature selection is 
crucial to the classification.  

4.1. Acoustic Features 

From table 2, it is not difficult to find that the most important 
feature to classify the prosodic boundary is the silence 
duration tsilenceD , . It shows that the longer silence is usually 
related to higher breaks. But from the table, we still can find 
the deviation of silence is not very small. It means not all of 
the breaks comply with the above rule. To get more 
knowledge, another group of statistic results was got in the 
table 3. It shows the silence distribution of the breaks. The 
table convinces the above discussion. 
Table 3  Statistic results of breaks in different silence duration 

Silence 
Boundary 

<5 ms 5~20 ms >20 ms 

B0 93.1% 5.7% 1.2% 
B1 36.7% 42.1% 21.2% 
B2 12.3% 28.4% 59.3% 

From table 2, we still can find tmeanF ,0 , tmeanF ,0∆ , tDF , tBD ,0  
also do the important roles for the boundaries, they have 
obvious rules and the deviation of them are limited. tmeanF ,0  
trends to be lower and tmeanF ,0∆  might be related to some 

negative values in prosodic word and phrase boundaries. The 
syllable duration previous to current break is usually 
lengthened and tDF  is enlarged before the prosodic phrase 
boundaries. Furthermore, tBD ,1 , tBD ,2  could also be used for the 
time limitation, as we know, people can not do the expulsion 
of breath in speech for a long time without any inspiration. 

Therefore, all of the selected acoustic parameters are, 
),,,,0,0,( ,2,1,0,,, tBtBtBttmeantmeantsilencet DDDDFFFDA ∆=
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4.2. Linguistic Features 

To get more efficient linguistic parameters, all of the possible 
features are extracted from the corpus at each boundary to 
establish an example database. Based on example database, 
the experiments in which the parameters are added into the 
input vectors step by step are conducted to show which 
parameters are more efficient to final prediction results. The 
precision rate and recall rate are calculated from the training 
set of the corpus for each step. The results are listed in table 4. 

Then we can got some results, 
Tone seems to be less useful than what we thought before. 
Part-of-speech and word length are the basic and useful 

feature. 
Neighboured information is much helpful for boundary 

prediction. 
Sentence length seems to be not important 
It is very interesting that tone seems to be not as important 

for prosodic boundary detecting as we though usually, even 
Chinese is a tonal language. The labeling results of phone foot 
boundary are observably improved with the help of the lexical 
words boundaries which was induced from linguistic analysis. 

Then, all of the selected parameters are, 
),,,,,( ,2,11,,1 tBtBtwordtwordttt LLLLPOSPOSS ++=

r

   (4) 

4.3. Window size selection 

The above discussion has mentioned that neighbored 
linguistic information serves as helpful information for 
prosodic boundaries prediction. How about acoustic 
parameters? Do they have the same phenomena? To give 
better answering, another group of experiments was carried 
out, which is shown in table 6. Here, “Left one” means the 
window used for CART model covers one syllable previous 
to the break, “Left two” means the two syllables previous to 
the break are included, etc. 

It is then obvious that neighbored information of both 
linguistic and acoustic parameters are really helpful for 
prosodic boundaries prediction, but the information in right 
side is less important than that in left side. For most case, 
window size of 2+1 (left two and right one) is enough for 
parsing. Larger size seems to be helpful, but it greatly enlarge 
the time consuming with no significant improvement on the 
results. 

Table 4  Results of feature selection in linguistic parameters
Steps Parameters selected Pre0 Rec0 Pre1 Rec1 Pre2 Rec2 
Step 0 tA

r
 0.822 0.953 0.781 0.590 0.680 0.591 

Step 1 tA
r ,

tT  0.831 0.947 0.742 0.591 0.702 0.582 
Step 2 tA

r ,
tPOS  0.922 0.971 0.851 0.763 0.798 0.749 

Step 3 tA
r ,

tPOS ,
1+tPOS  0.924 0.978 0.889 0.778 0.814 0.786 

Step 4 tA
r ,

tPOS ,
1+tPOS ,

twordL ,  0.931 0.985 0.923 0.817 0.865 0.833 
Step 5 tA

r ,
tPOS ,

1+tPOS ,
twordL ,

,
1, +twordL  0.928 0.985 0.927 0.803 0.853 0.831 

Step 6 tA
r ,

tPOS ,
1+tPOS ,

twordL ,
,

1, +twordL ,
sentenceL  0.918 0.979 0.893 0.774 0.827 0.787 

Step 7 tA
r ,

tPOS ,
1+tPOS ,

twordL ,
,

1, +twordL ,
sentenceL ,

tBL ,1  0.937 0.984 0.922 0.811 0.834 0.832 



Step 8 tA
r ,

tPOS ,
1+tPOS ,

twordL ,
,

1, +twordL ,
sentenceL ,

tBL ,1
,

tBL ,2  0.935 0.985 0.923 0.823 0.882 0.839 
 

Table 5  Result of experiments with different window size 
Steps Windows Length Pre0 Rec0 Pre1 Rec1 Pre2 Rec2 
Step 1 Left one 0.921 0.972 0.853 0.760 0.791 0.748 
Step 2 Left one, right one 0.937 0.985 0.921 0.825 0.880 0.839 
Step 3 Left two, right one 0.942 0.987 0.931 0.838 0.890 0.854 
Step 4 Left three, right one 0.939 0.985 0.921 0.832 0.892 0.843 
Step 5 Left one, right two 0.911 0.974 0.865 0.763 0.847 0.762 
Step 6 Left two, right two  0.930 0.987 0.937 0.817 0.883 0.847 
Step 7 Left three, right two 0.924 0.985 0.921 0.807 0.891 0.828 
Step 8 Left one, right three 0.922 0.978 0.896 0.785 0.845 0.797 
Step 9 Left two, right three 0.921 0.988 0.938 0.805 0.892 0.840 
Step 10 Left three, right three 0.944 0.987 0.934 0.843 0.891 0.859 

5. Evaluation and Discussion 
To evaluate the classification model, the corpus is divided 
into two parts, training set (1/4) and testing set (3/4). Training 
set contains all of the sentences listed in the corpus, 1/4 from 
each speaker. With selected feature and 2+1 window size, the 
testing results of four speakers’ data are list as following, 

Table 6 Results by different test corpus 
B0 B1 B2 Speaker 

Pre Rec Pre Rec Pre Rec
M1 0.935 0.990 0.951 0.831 0.897 0.867
M2 0.953 0.980 0.884 0.866 0.933 0.829
F1 0.939 0.989 0.947 0.831 0.876 0.865
F3 0.933 0.987 0.942 0.816 0.862 0.851

The results show the high labelling accuracy. The 
confusion matrix is also listed here, 

Table 7 The statistic results of confusion matrix among B0, 
B1 and B2 from four speakers 

Predicted labels True labels  
B0 B1 B2 

B0 21025 1035 260 
B1 252 7259 287 
B2 33 365 3212 

From table 4, we know B2 was potential classified as B1, 
and B0 is more likely to be labelled as B1 than B2. It obeys 
the rules of Gaussian distribution. 

Table 8 Evaluation results from different methods 
Tests Pre0 Rec0 Pre1 Rec1 Pre2 Rec2 
CART + acoustic + 
linguistic 

0.942 0.987 0.931 0.838 0.890 0.854
CART + acoustic 0.832 0.955 0.788 0.603 0.686 0.603
CART + linguistic 0.899 0.963 0.814 0.697 0.712 0.677
RULE + acoustic + 
linguistic 

0.892 0.970 0.845 0.726 0.831 0.727
RNN + acoustic + 
linguistic 

0.901 0.984 0.922 0.769 0.883 0.806

Table 8 presents the comparing results among CART 
(with/without acoustic or linguistic parameters), rule based 
and RNN. It is of course possible to adapt the classification to 
various demands, e.g., in order to get better labelling rates for 
the boundaries if more false alarms can be tolerated. Similar 
classification experiments with syntactic –prosodic 
boundaries are reported in (Wang and Hirschberg, 1992; 
Ostendorf et al., 1993), where HMMs or classification trees 
were used. The authors rely on perceptual–prosodic labels 
created on the basis of the ToBI system (Beckman and Ayers, 
1994); for such labels, however, a much smaller amount of 
data can be obtained than in our case, cf. Section 2. Our 
recognition rates are high, however, that the studies cannot be 
compared in a strict sense because they considerably w.r.t. 
several factors 

6. Conclusions 
In the paper, we describe an effective method to generate 
rules for Chinese prosodic boundary labelling. The main idea 
is to extract appropriate features from acoustic and linguistic 
information and to apply rule-learning algorithms to 
automatically induce rules for predicting prosodic boundary 
labels. In order to find the most effective features, a series of 
feature selection experiments is conducted. The acquired rules 
achieve a best accuracy rate above 86% for prosodic phrase 
boundaries on test data and outperform the RNN or rule based 
methods, which justifies rule-learning as an effective 
alternative to prosodic phrase prediction. Features from deep 
syntactic, semantic or discourse information will be paid more 
attention to (Julia and Owen, 2001). The speech corpus will 
be enlarged to cover more types of text and speaking styles 
and more and more effort will be focused on spontaneous 
speech. 
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