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Vocal pitch is an important feature of speech

• We use pitch to communicate meaning across multiple scales:

• In English: excitement, doubt, sarcasm, emphasis, question, clause 
structure

• In tonal languages, pitch carries lexical information

• Humans have more flexible control than other primates

• Difference due to brain, not body (Fitch et al., 2016; Jurgens, 2002)  

• Hypothesized to be a key evolutionary step toward speech 
(Brown et al., 2008; Pasinski, 2016; Hickok, 2016)
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Pitch is controlled by the larynx
vocal cords

mid highlow

h"ps://www.youtube.com/watch?v=iYpDwhpILkQ	



Muscular control of pitch

Pitch

EMG of  
CT muscle

(Collier 1974)

The cricothyroid (CT) muscle stretches 
the vocal folds and increases vocal pitch



Electrocorticography (ECoG)



Electrocorticography (ECoG)

• Surgical treatment for epilepsy



Electrocorticography (ECoG)

• Surgical treatment for epilepsy

• 256+ electrodes



Electrocorticography (ECoG)

• Surgical treatment for epilepsy

• 256+ electrodes

• Neural activity: amplitude in 
high gamma (70-150 Hz)



Electrocorticography (ECoG)

• Surgical treatment for epilepsy

• 256+ electrodes

• Neural activity: amplitude in 
high gamma (70-150 Hz)

• Very good temporal resolution
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Larynx is voicing only
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Cortical representation of larynx

• dLMC and vLMC active in voicing

• vLMC found in non-human 
primates but dLMC unique to 
humans among primates

• Tuning for pitch has not yet been 
identified

• We hypothesize that there is an 
explicit encoding of pitch in 
dLMC

Conant	2014	review	

 

 
vLMC
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Articulators: dynamic time warping

before warping after warping
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Pitch encoding in dLMC across subjects

Findings:
• In dLMC, higher pitch has higher activation
• In the superior temporal gyrus, an auditory area, 

electrodes are split between preferring higher pitches 
and lower pitches

12 subjects
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Encoding of Components of Prosody

Fujisaki Model: a parsimonious explanation for pitch contours

(Fujisaki, Speech Prosody, 2004)

Hypothesis: different components controlled separately



Fitting the Fujisaki model using FujiParaEditor

Written by Dr. Hansjörg Mixdorff
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Auditory response M1

response to speech sounds

(Wilson et al. 2004)

Does this area overlap with dLMC? Does it encode pitch?



Auditory control: Playback

The recording of the task was played back to the subject
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Test whether laryngeal control is unique to speech 

Task: Call-and-response singing task

Pitch control during singing
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Pitch control during singing

Findings:
• Higher pitch has higher activation
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Pitch control during singing

Findings:
• Higher pitch has higher activation
• Representation starts before sound
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Pitch control during singing

Findings:
• Higher pitch has higher activation
• Representation starts before sound
• Same electrodes as during speech
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Findings:
• Higher pitch has higher activation
• Representation starts before sound
• Same electrodes as during speech
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Summary: The dLMC encodes fine control of 
vocal pitch

• Correlated with pitch when speaking and 
singing 

• Encodes fast pitch accents 
• Control of pitch distinct from control of voicing

But is it causal?



Cortical Stimulation
“Asleep” 
Patient is asleep, with 
an endotracheal tube in 
the throat. The tube 
blocks any 
vocalizations, and has 
electrodes on the focal 
folds that measure 
contractions.
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Cortical Stimulation
“Asleep” 
Patient is asleep, with an 
endotracheal tube in the 
throat. The tube blocks any 
vocalizations, and has 
electrodes on the focal 
folds that measure 
contractions. 

Stimulation evokes 
laryngeal contraction

“Awake” 
Patients are awake, doing 
simple tasks like counting 
and describing the 
experience of stimulation. 
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Results

The dLMC is a sensorimotor speech area that 
encodes pitch  

Auditory 
• Responds to acoustic stimuli and represents vocal pitch 

Motor 
• Correlated with pitch when speaking and singing 
• Monotonically increases with pitch 
• Cortical stimulation evokes vocalizations and a graded laryngeal 

motor response
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Two possibilities:

1. Motor theory of speech perception
• Specifically for voice/pitch control
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Evidence for motor theory in dLMC

• The right PMC is more active 
when focusing on pitch

• rTMS over right PMC worsens 
pitch discrimination but not 
phoneme discrimination

rTMS 

(Sammler et al. 2015)
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• Specifically for voice/pitch control 

2. Feedback control 
• Why passive listening response? 

Seems wasteful.
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Role of sensorimotor representation

Two possibilities: 

1. Motor theory of speech perception 
• Specifically for voice/pitch control 

2. Feedback control 
• Why passive listening response? 

Seems wasteful.

Either way, merging of motor and auditory pitch 
representation could be key to development of speech
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Estimating produced vocal pitch from brain activity

Some people are locked in and unable to move at all

With a speech prosthetic we could be able to record their 
intended speech and provide an alternate way for them to 
to communicate

So how well could we infer prosody?
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Estimating produced vocal pitch from brain activity: 
Kalman Filter

models dynamics of pitch

models neural encoding of pitch

{
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Questions?
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Cortical Representation of pitch 
perception

1. How is intonation represented in non-primary 
auditory cortex on the STG?

• Does intonation affect phonetic encoding? 
• Is intonation encoded independently from 

phonetic information?

2. How does the representation of intonation relate to 
the neural encoding of pitch values?

• Absolute vs. relative pitch? (Claire Tang et al.,  
Science 2017)



Stimuli

• designed to vary intonation, phonetic content, and 
speaker independently.  
 

4 intonation contours x 4 sentences x 3 speakers
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Results

• Local neural populations in STG encode intonation. 

• The representation of intonation is phonetic feature 
and speaker invariant. 

• Intonation and phonetic content are encoded in 
separate neural populations. 



Confounding variables

Factor Solution

Loudness Partial correlation

Supra-laryngeal 
articulators (Tongue, 
Jaw, Velum, etc.)

Dynamic time warping

Declination (pitch 
lowering) Shuffle test
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Individual stimulation EMG results
subject 1 subject 2

subject 3 subject 4









Singing behavior



Endotracheal tube with EMG



Contrastive emphasis task: vocal pitch encoding

125
200

   
P

itc
h

   
(H

z) I never said she stole my money.

0 2time (s)



Contrastive emphasis task: vocal pitch encoding

125
200

   
P

itc
h

   
(H

z) I never said she stole my money.

0 2time (s)

200

250

pi
tc

h 
(H

z)

0.0

0.3

m
od

el

0 2time (s)

200

250

pi
tc

h 
(H

z)

produced pitch

model estimates

pitch reconstruction

phrase
accent
voicing



Contrastive emphasis task: vocal pitch encoding

125
200

   
P

itc
h

   
(H

z) I never said she stole my money.

0 2time (s)



Contrastive emphasis task: vocal pitch encoding

125
200

   
P

itc
h

   
(H

z) I never said she stole my money.

0 2time (s)



Contrastive emphasis task: vocal pitch encoding

125
200   Pitch

   (Hz)
I  never said she stole my money.

I never  said she stole my money..

I never said  she stole my money.

I never said she  stole my money.

I never said she stole  my money.

I never said she stole my  money.

I never said she stole my money. .

I never said she stole my money?

0 2time (s)



Contrastive emphasis task: vocal pitch encoding

ECoG
125
200   Pitch

   (Hz)
I  never said she stole my money.

I never  said she stole my money..

I never said  she stole my money.

I never said she  stole my money.

I never said she stole  my money.

I never said she stole my  money.

I never said she stole my money. .

I never said she stole my money?

0 2time (s)



Contrastive emphasis task: vocal pitch encoding

ECoG

0.0 0.5 1.0 1.5 2.0
time (s)

−50

0voltage of
electrode

125
200   Pitch

   (Hz)
I  never said she stole my money.

I never  said she stole my money..

I never said  she stole my money.

I never said she  stole my money.

I never said she stole  my money.

I never said she stole my  money.

I never said she stole my money. .

I never said she stole my money?

0 2time (s)



Contrastive emphasis task: vocal pitch encoding

ECoG

0.0 0.5 1.0 1.5 2.0
time (s)

−50

0voltage of
electrode

−50

0voltage of
electrode

0.0 0.5 1.0 1.5 2.0
time (s)

−10

0

10
high gamma
fluctuations

125
200   Pitch

   (Hz)
I  never said she stole my money.

I never  said she stole my money..

I never said  she stole my money.

I never said she  stole my money.

I never said she stole  my money.

I never said she stole my  money.

I never said she stole my money. .

I never said she stole my money?

0 2time (s)



Contrastive emphasis task: vocal pitch encoding

ECoG

0.0 0.5 1.0 1.5 2.0
time (s)

−50

0voltage of
electrode

−50

0voltage of
electrode

0.0 0.5 1.0 1.5 2.0
time (s)

−10

0

10
high gamma
fluctuations

125
200   Pitch

   (Hz)
I  never said she stole my money.

I never  said she stole my money..

I never said  she stole my money.

I never said she  stole my money.

I never said she stole  my money.

I never said she stole my  money.

I never said she stole my money. .

I never said she stole my money?

0 2time (s)

Correlates with firing rate of neuron 
(Ray and Mansell, 2011) and speech 
movements (Bouchard et al. 2013)



Contrastive emphasis task: vocal pitch encoding

ECoG

0.0 0.5 1.0 1.5 2.0
time (s)

−50

0voltage of
electrode

−50

0voltage of
electrode

0.0 0.5 1.0 1.5 2.0
time (s)

−10

0

10
high gamma
fluctuations

125
200   Pitch

   (Hz)
I  never said she stole my money.

I never  said she stole my money..

I never said  she stole my money.

I never said she  stole my money.

I never said she stole  my money.

I never said she stole my  money.

I never said she stole my money. .

I never said she stole my money?

0 2time (s)

125
200   Pitch

   (Hz)
I  never said she stole my money.

1 ECoG
trials

I never  said she stole my money..

I never said  she stole my money.

I never said she  stole my money.

I never said she stole  my money.

I never said she stole my  money.

I never said she stole my money. .

I never said she stole my money?

0 2time (s)
0.5

3.0
HG

Correlates with firing rate of neuron 
(Ray and Mansell, 2011) and speech 
movements (Bouchard et al. 2013)



Contrastive emphasis task: vocal pitch encoding

ECoG

0.0 0.5 1.0 1.5 2.0
time (s)

−50

0voltage of
electrode

−50

0voltage of
electrode

0.0 0.5 1.0 1.5 2.0
time (s)

−10

0

10
high gamma
fluctuations

125
200   Pitch

   (Hz)
I  never said she stole my money.

I never  said she stole my money..

I never said  she stole my money.

I never said she  stole my money.

I never said she stole  my money.

I never said she stole my  money.

I never said she stole my money. .

I never said she stole my money?

0 2time (s)

125
200   Pitch

   (Hz)
I  never said she stole my money.

1 ECoG
trials

I never  said she stole my money..

I never said  she stole my money.

I never said she  stole my money.

I never said she stole  my money.

I never said she stole my  money.

I never said she stole my money. .

I never said she stole my money?

0 2time (s)
0.5

3.0
HG

125
200   Pitch

   (Hz)
I  never said she stole my money.

1
14

ECoG
trials

I never  said she stole my money..

I never said  she stole my money.

I never said she  stole my money.

I never said she stole  my money.

I never said she stole my  money.

I never said she stole my money. .

I never said she stole my money?

0 2time (s)
0.5

3.0
HG

Correlates with firing rate of neuron 
(Ray and Mansell, 2011) and speech 
movements (Bouchard et al. 2013)



Roadmap for representation of pitch

• Control of vocal pitch production 

• In speech 

• In song 

• Cortical stimulation 

• Pitch intonation perception in speech



Sentence timing: permutation test

… x 1,000


