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Vocal pitch is an important feature of speech



Vocal pitch is an important feature of speech

- We use pitch to communicate meaning across multiple scales:



Vocal pitch is an important feature of speech

+ In English: excitement, doubt, sarcasm, emphasis, question, clause
structure



Vocal pitch is an important feature of speech

- In tonal languages, pitch carries lexical information



Vocal pitch is an important feature of speech

- Humans have more flexible control than other primates



Vocal pitch is an important feature of speech

- Difference due to brain, not body (Fitch et al., 2016; Jurgens, 2002)



Vocal pitch is an important feature of speech

* Hypothesized to be a key evolutionary step toward speech
(Brown et al., 2008; Pasinski, 2016; Hickok, 2016)



Pitch is controlled by the larynx

- vocal cords
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Pitch is controlled by the larynx

{",ﬁ\ vocal cords

)
2




Pitch is controlled by the larynx

https://www.youtube.com/watch?v=iYpDwhplLkQ




Pitch is controlled by the larynx
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Muscular control of pitch

Hz
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Pitch 1o I\/\ V\\,/
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MV 0

EMG of
CT muscle

uv

(Collier 1974)

he cricothyroid (CT) muscle stretches
the vocal folds and increases vocal pitch
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“lectrocorticography (ECoG)

Surgical treatment for epilepsy
250+ electrodes

Neural activity: amplitude in
high gamma (70-150 Hz)




“lectrocorticography (ECoG)

Surgical treatment for epilepsy
250+ electrodes

Neural activity: amplitude in
high gamma (70-150 Hz)

Very good temporal resolution




Previous work: ECoG activity related to
articulators
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(Bouchard et al., Nature, 2015)
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Previous work: ECoG activity related to
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- dLMC and vLMC active in voicing

Conant 2014 review



Cortical representation of larynx

- dLMC and vLMC active in voicing

- vLMC found in non-human
primates but dLMC unigue to
humans among primates

Conant 2014 review



Cortical representation of larynx

- dLMC and vLMC active in voicing

- vLMC found in non-human
primates but dLMC unigue to
humans among primates

Tuning for pitch h h
Tuning for pitch has not yet been vLMC
Identified

Conant 2014 review



Cortical representation of larynx

- dLMC and vLMC active in voicing

- vLMC found in non-human
primates but dLMC unigue to
humans among primates

- Tuning for pitch has not yet been
identified

Conant 2014 review

- We hypothesize that there is an
explicit encoding of pitch In
dLMC



Contrastive emphasis task: vocal pitch encoding

I never said she stole my money.

(Cell, in press)
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Contrastive emphasis task: vocal pitch encoding
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Contrastive emphasis task: vocal pitch encoding

(Cell, in press)
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Contrastive emphasis task: vocal pitch encoding

(Cell, in press)
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Contrastive emphasis task: vocal pitch encoding
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Contrastive emphasis task: vocal pitch encoding

(Cell, in press)
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Articulators: dynamic time warping
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Pitch encoding in dLMC across subjects
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Pitch encoding in dLMC across subjects

O
N

correlation

I
o
N

12 subjects

Findings:




Pitch encoding in dLMC across subjects

O
N

correlation

028

12 subjects

Findings:
In dLMC, higher pitch has higher activation



Pitch encoding in dLMC across subjects

O
N

correlation

|
O
N

12 subjects

Findings:

- In dLMC, higher pitch has higher activation

- In the superior temporal gyrus, an auditory area,
electrodes are split between preferring higher pitches
and lower pitches



High gamma increases with pitch in dLMC
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—ncoding of Components of Prosody

Fujisaki Model: a parsimonious explanation for pitch contours
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(Fujisaki, Speech Prosody, 2004)



—ncoding of Components of Prosody

Fujisaki Model: a parsimonious explanation for pitch contours
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Hypothesis: different components controlled separately

(Fujisaki, Speech Prosody, 2004)



Fitting the Fujisaki model using FujiParakditor
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Encoding of Fujisaki components
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Encoding of Fujisaki components
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Encoding of Fujisaki components
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Encoding of Fujisaki components
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Auditory response M1

>Subject 1 "R response to speech sounds

(Wilson et al. 2004)



Auditory response M1

Pl response to speech sounds

(Wilson et al. 2004)

Does this area overlap with dLMC? Does it encode pitch?



Auditory control: Playback

The recording of the task was played back to the subject



Auditory control: Playback

The recording of the task was played back to the subject
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Auditory control: Playback
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Auditory control: Playback

The recording of the task was played back to the subject
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Auditory control: Playback

The recording of the task was played back to the subject

0.3 - == speaking
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Pitch control during singing

Test whether laryngeal control is unique to speech

Task: Call-and-response singing task
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Pitch control during singing
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Pitch control during singing
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Pitch control during singing
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Summary: The dLMC encodes fine control of
vocal pitch

+ Correlated with pitch when speaking and
singing

+ Encodes fast pitch accents

- Gontrol of pitch distinct from control of voicing



Summary: The dLMC encodes fine control of
vocal pitch

+ Correlated with pitch when speaking and
singing

+ Encodes fast pitch accents

- Gontrol of pitch distinct from control of voicing

But is it causal?



Cortical Stimulation

“Asleep”

Patient Is asleep, with
an endotracheal tube In
the throat. The tube
olocks any
vocalizations, and has
electrodes on the focal
folds that measure
contractions.




Cortical stimulation of dLMC evokes larynx response

Patients are anesthetized with electrodes placed on vocal chords

Brain locations that made
larynx respond




Cortical stimulation of dLMC evokes larynx response

Patients are anesthetized with electrodes placed on vocal chords
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Cortical stimulation of dLMC evokes larynx response

Patients are anesthetized with electrodes placed on vocal chords

Brain locations that made Stronger stimulation cause
larynx respond larynx stronger response
response
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Cortical Stimulation

“Awake”

Patients are awake, doing
simple tasks like counting
and describing the

experience of stimulation.




“Awake” dLMC stimulation evokes vocalization
with varied acoustic structure

chest voice
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“Awake” dLMC stimulation evokes vocalization
with varied acoustic structure

vocal fry
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“Awake” dLMC stimulation evokes vocalization
with varied acoustic structure

vocal fry
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“Awake” dLMC stimulation evokes vocalization
with varied acoustic structure

vocal fry
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Results

The dLMC is a sensorimotor speech area that
encodes pitch

Auditory
e Responds to acoustic stimuli and represents vocal pitch

Motor
o Correlated with pitch when speaking and singing
 Monotonically increases with pitch

» Cortical stimulation evokes vocalizations and a graded laryngeal
MOotor response



Role of sensorimotor representation
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Role of sensorimotor representation
Two possibilities:

1. Motor theory of speech perception
- Specifically for voice/pitch control



Evidence for motor theory in dLMC

(Sammler et al. 2015)



Evidence for motor theory in dLMC

- The right PMC is more active
when focusing on pitch

(Sammler et al. 2015)



Evidence for motor theory in dLMC

(Sammler et al. 2015)

- The right PMC is more active

when focusing on pitch

- rTMS over right PMC worsens

pitch discrimination but not
phoneme discrimination



Role of sensorimotor representation

Two possibilities:

1. Motor theory of speech perception
Specifically for voice/pitch control

2. Feedback control
- Why passive listening response?
Seems wasteful.



Sensorimotor role: evidence for feedback
control in vLMC, not dLMC
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Sensorimotor role: evidence for feedback
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Role of sensorimotor representation

Two possibilities:

1. Motor theory of speech perception
- Specifically for voice/pitch control

2. Feedback control
- Why passive listening response?
Seems wasteful.

Either way, merging of motor and auditory pitch
representation could be key to development of speech
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—stimating produced vocal pitch from brain activity

Some people are locked in and unable to move at all

With a speech prosthetic we could be able to record their
iIntended speech and provide an alternate way for them to
to communicate

So how well could we infer prosody”’
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—stimating produced vocal pitch from brain activity:
Kalman Filter

models dynamics of pitch
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—stimating produced vocal pitch from brain activity:
Kalman Filter

models dynamics of pitch

e
r A
example sentence Sy v
Ve = CX[ - Vi Ve ™~ -Af (O, R)
250 - —_— frue —
—— kalman smoother models neural encoding of pitch
N
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L
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correlation across
held out sentences = 0.7
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—stimating word of emphasis directly

Linear Discriminant Analysis

neural activity
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—stimating word of emphasis directly

Linear Discriminant Analysis  Classification Accuracy (80%)
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Questions?



Previous work: ECoG activity related to
speech sounds

Task: Passive listening to continuous
speech corpus (which is
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Cortical Representation of pitch

pe

rception

1. How Is intonation represented in non-primary

auditory cortex on t

ne STG?

e Does Iintonation af

‘ect phonetic encoding?

* |s intonation encoded independently from
ohonetic information”

2. How does the representation of intonation relate to
the neural encoding of pitch values”

* Absolute vs. relative pitch?

(Claire Tang et al.,
Science 2017)



Stimuli

* designed to vary intonation, phonetic content, and
speaker independently.

4 Intonation contours x 4 sentences x 3 speakers
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Intonation and phonetic content are encoded
IN separate neural populations

s |ntonation
e Sentence
e Speaker



Electrodes primarily encode one:
intonation, phonetic features, or speaker




Electrodes primarily encode one:
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Results

* Local neural populations in STG encode intonation.

* The representation of intonation is phonetic feature
and speaker invariant.

* [ntonation and phonetic content are encoded In
separate neural populations.



Confounding variables

Factor Solution

Loudness Partial correlation

Supra-laryngeal
articulators (Tongue, Dynamic time warping
Jaw, Velum, etc.)

Declination (pitch

. Shuffle test
lowering)
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Individual stimulation EMG results
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Contrastive emphasis task: vocal pitch encoding
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Roadmap for representation of pitch

- Control of vocal pitch production
INn speech
INn song
- Cortical stimulation

- Pitch intonation perception in speech



Pitch (Hz)

180
140
100

Sentence timing: permutation test

,‘» -“

0.5

Time (s)

HG

Time (s)

... X 1,000



